Neurosurgery Blog

Icon

Daily bibliographic review of the Neurosurgery Department. La Fe University Hospital. Valencia, Spain

Cost-effectiveness analysis of shunt surgery for idiopathic normal pressure hydrocephalus

Acta Neurochir (2017) 159:995–1003

We showed that ventriculoperitoneal (VP) shunt and lumboperitoneal (LP) shunt surgeries are beneficial for patients with idiopathic normal pressure hydrocephalus (iNPH) in the Study of Idiopathic Normal Pressure Hydrocephalus on Neurological Improvement (SINPHONI; a multicenter prospective cohort study) and in SINPHONI-2 (a multicenter randomized trial). Although therapeutic efficacy is important, cost-effectiveness analysis is equally valuable.

Methods Using both a set of assumptions and using the data from SINPHONI and SINPHONI-2, we estimated the total cost of treatment for iNPH, which consists of medical expenses (e.g., operation fees) and costs to the long-term care insurance system (LCIS) in Japan. Regarding the natural course of iNPH patients, 10% or 20% of patients on each modified Rankin Scale (mRS) show aggravation (aggravation rate: 10% or 20%) every 3 months if the patients do not undergo shunt surgery, as described in a previous report. We performed cost-effectiveness analyses for the various scenarios, calculating the quality-adjusted life year (QALY) and the incremental cost-effective ratio (ICER). Then, based on the definition provided by a previous report, we assessed the cost-effectiveness of shunt surgery for iNPH.

Results In the first year after shunt surgery, the ICER of VP shunt varies from 29,934 to 40,742 USD (aggravation rate 10% and 20%, respectively) and the ICER of LP shunt varies from 58,346 to 80,392 USD (aggravation rate 10% and 20%, respectively), which indicates that the shunt surgery for iNPH is a cost-effective treatment. In the 2nd postoperative year, the cost to the LCIS will continue to decrease because of the lasting improvement of the symptoms due to the surgery. The total cost for iNPH patients will show a positive return on investment in as soon as 18 months (VP) and 21 months (LP), indicating that shunt surgery for iNPH is a cost-effective treatment.

Conclusions Because the total cost for iNPH patients will show a positive return on investment within 2 years, shunt surgery for iNPH is a cost-effective treatment and therefore recommended. The SINPHONI-2 study was registered with the University Hospital Medical Information Network Clinical Trials registry: UMIN000002730) SINPHONI was registered with ClinicalTrials.gov, no. NCT00221091.

Category: hydrocephalus

Tagged: , , ,

Leave a Reply

You must be logged in to post a comment.

The Safety and Feasibility of Image-Guided BrainPath-Mediated Trans-Sulcal Hematoma Evacuation

Haptic Virtual Reality Aneurysm Clipping

Subtemporal Approach for AICA Aneurysm Clipping

MCA Aneurysm Anatomical Classification Scheme

Blister Aneurysms of the Internal Carotid Artery

Bypass for Complex Basilar Aneurysms

Basilar Invagination and Atlanto-Axial Dislocation Video 1

Indocyanine Green Videoangiography “In Negative” Video 2

Indocyanine Green Videoangiography “In Negative” Video 1

Management of a Recurrent Coiled Giant Posterior Cerebral Artery Aneurysm

Bypass for Complex Basilar Aneurysms

Expanded Endonasal Approach for 2012 MERC

Endoscopic Endonasal Middle Clinoidectomy Video 1

Endoscopic Endonasal Middle Clinoidectomy Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 1

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 2

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 1

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 2

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 1

NeurosurgeryCNS: Endovascular-Surgical Approach to Cavernous dAVF

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 4

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 3

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 2

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 1

NeurosurgeryCNS: Surgery of AVMs in Motor Areas

NeurosurgeryCNS: The Fenestrated Yaşargil T-Bar Clip

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 3

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 2

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 1

NeurosurgeryCNS. ‘Double-Stick Tape’ Technique for Offending Vessel Transposition in Microvascular Decompression

NeurosurgeryCNS: Advances in the Treatment and Outcome of Brain Stem Cavernous Malformation Surgery: 300 Patients

3T MRI Integrated Neuro Suite

NeurosurgeryCNS: 3D In Vivo Modeling of Vestibular Schwannomas and Surrounding Cranial Nerves Using DIT

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 7

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 6

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 5

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 4

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 3

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 2

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 1

NeurosurgeryCNS: Corticotomy Closure Avoids Subdural Collections After Hemispherotomy

NeurosurgeryCNS: Operative Nuances of Side-to-Side in Situ PICA-PICA Bypass Procedure

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 3

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 2

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 1

NeurosurgeryCNS: Fusiform Aneurysms of the Anterior Communicating Artery

NeurosurgeryCNS. Initial Clinical Experience with a High Definition Exoscope System for Microneurosurgery

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 2

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 1

NeurosurgeryCNS: Typical colloid cyst at the foramen of Monro.

NeurosurgeryCNS: Neuronavigation for Neuroendoscopic Surgery

NeurosurgeryCNS:New Aneurysm Clip System for Particularly Complex Aneurysm Surgery

NeurosurgeryCNS: AICA/PICA Anatomical Variants Penetrating the Subarcuate Fossa Dura

Craniopharyngioma Supra-Orbital Removal

NeurosurgeryCNS: Use of Flexible Hollow-Core CO2 Laser in Microsurgical Resection of CNS Lesions

NeurosurgeryCNS: Ulnar Nerve Decompression

NeurosurgeryCNS: Microvascular decompression for hemifacial spasm

NeurosurgeryCNS: ICG Videoangiography

NeurosurgeryCNS: Inappropiate aneurysm clip applications


33,076
Unique
Visitors
Powered By Google Analytics

Total views

  • 0
%d bloggers like this: