Neurosurgery Blog

Icon

Daily bibliographic review of the Neurosurgery Department. La Fe University Hospital. Valencia, Spain

Frameless deep brain stimulation using intraoperative O-arm technology

J Neurosurg 115:301–309, 2011. DOI: 10.3171/2011.3.JNS101642

Correct lead location in the desired target has been proven to be a strong influential factor for good clinical outcome in deep brain stimulation (DBS) surgery. Commonly, a surgeon’s first reliable assessment of such location is made on postoperative imaging. While intraoperative CT (iCT) and intraoperative MR imaging have been previously described, the authors present a series of frameless DBS procedures using O-arm iCT.

Methods. Twelve consecutive patients with 15 leads underwent frameless DBS placement using electrophysiological testing and O-arm iCT. Initial target coordinates were made using standard indirect and direct assessment. Microelectrode recording (MER) with kinesthetic responses was performed, followed by microstimulation to evaluate the side-effect profile. Intraoperative 3D CT acquisitions obtained between each MER pass and after final lead placement were fused with the preoperative MR image to verify intended MER movements around the target area and to identify the final lead location. Tip coordinates from the initial plan, final intended target, and actual lead location on iCT were later compared with the lead location on postoperative MR imaging, and euclidean distances were calculated. The amount of radiation exposure during each procedure was calculated and compared with the estimated radiation exposure if iCT was not performed.

Results. The mean euclidean distances between the coordinates for the initial plan, final intended target, and actual lead on iCT compared with the lead coordinates on postoperative MR imaging were 3.04 ± 1.45 mm (p = 0.0001), 2.62 ± 1.50 mm (p = 0.0001), and 1.52 ± 1.78 mm (p = 0.0052), respectively. The authors obtained good merging error during image fusion, and postoperative brain shift was minimal. The actual radiation exposure from iCT was invariably less than estimates of exposure using standard lateral fluoroscopy and anteroposterior radiographs (p < 0.0001).

Conclusions. O-arm iCT may be useful in frameless DBS surgery to approximate microelectrode or lead locations intraoperatively. Intraoperative CT, however, may not replace fundamental DBS surgical techniques such as electrophysiological testing in movement disorder surgery. Despite the lack of evidence for brain shift from the procedure, iCT-measured coordinates were statistically different from those obtained postoperatively, probably indicating image merging inaccuracy and the difficulties in accurately denoting lead location. Therefore, electrophysiological testing may truly be the only means of precisely knowing the location in 3D space intraoperatively. While iCT may provide clues to electrode or lead location during the procedure, its true utility may be in DBS procedures targeting areas where electrophysiology is less useful. The use of iCT appears to reduce radiation exposure compared with the authors’ traditional frameless technique.

Category: Functional

Tagged: , , , , , ,

Comments are closed.

The Safety and Feasibility of Image-Guided BrainPath-Mediated Trans-Sulcal Hematoma Evacuation

Haptic Virtual Reality Aneurysm Clipping

Subtemporal Approach for AICA Aneurysm Clipping

MCA Aneurysm Anatomical Classification Scheme

Blister Aneurysms of the Internal Carotid Artery

Bypass for Complex Basilar Aneurysms

Basilar Invagination and Atlanto-Axial Dislocation Video 1

Indocyanine Green Videoangiography “In Negative” Video 2

Indocyanine Green Videoangiography “In Negative” Video 1

Management of a Recurrent Coiled Giant Posterior Cerebral Artery Aneurysm

Bypass for Complex Basilar Aneurysms

Expanded Endonasal Approach for 2012 MERC

Endoscopic Endonasal Middle Clinoidectomy Video 1

Endoscopic Endonasal Middle Clinoidectomy Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 1

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 2

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 1

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 2

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 1

NeurosurgeryCNS: Endovascular-Surgical Approach to Cavernous dAVF

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 4

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 3

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 2

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 1

NeurosurgeryCNS: Surgery of AVMs in Motor Areas

NeurosurgeryCNS: The Fenestrated Yaşargil T-Bar Clip

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 3

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 2

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 1

NeurosurgeryCNS. ‘Double-Stick Tape’ Technique for Offending Vessel Transposition in Microvascular Decompression

NeurosurgeryCNS: Advances in the Treatment and Outcome of Brain Stem Cavernous Malformation Surgery: 300 Patients

3T MRI Integrated Neuro Suite

NeurosurgeryCNS: 3D In Vivo Modeling of Vestibular Schwannomas and Surrounding Cranial Nerves Using DIT

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 7

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 6

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 5

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 4

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 3

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 2

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 1

NeurosurgeryCNS: Corticotomy Closure Avoids Subdural Collections After Hemispherotomy

NeurosurgeryCNS: Operative Nuances of Side-to-Side in Situ PICA-PICA Bypass Procedure

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 3

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 2

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 1

NeurosurgeryCNS: Fusiform Aneurysms of the Anterior Communicating Artery

NeurosurgeryCNS. Initial Clinical Experience with a High Definition Exoscope System for Microneurosurgery

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 2

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 1

NeurosurgeryCNS: Typical colloid cyst at the foramen of Monro.

NeurosurgeryCNS: Neuronavigation for Neuroendoscopic Surgery

NeurosurgeryCNS:New Aneurysm Clip System for Particularly Complex Aneurysm Surgery

NeurosurgeryCNS: AICA/PICA Anatomical Variants Penetrating the Subarcuate Fossa Dura

Craniopharyngioma Supra-Orbital Removal

NeurosurgeryCNS: Use of Flexible Hollow-Core CO2 Laser in Microsurgical Resection of CNS Lesions

NeurosurgeryCNS: Ulnar Nerve Decompression

NeurosurgeryCNS: Microvascular decompression for hemifacial spasm

NeurosurgeryCNS: ICG Videoangiography

NeurosurgeryCNS: Inappropiate aneurysm clip applications


32,538
Unique
Visitors
Powered By Google Analytics

Total views

  • 0
%d bloggers like this: