Neurosurgery Blog

Icon

Daily bibliographic review of the Neurosurgery Department. La Fe University Hospital. Valencia, Spain

Pathophysiology of shunt dysfunction in shunt treated hydrocephalus

Pathophysiology of shunt dysfunction in shunt

Acta Neurochir (2013) 155:1763–1772

We hypothesized that shunt dysfunction in the ventricular catheter and the shunt valve is caused by different cellular responses. We also hypothesized that the cellular responses depend on different pathophysiological mechanisms.

Methods Removed shunt material was collected. Macroscopic tissue in the catheters was paraffin-embedded and HE-stained. Valves were incubated with trypsin-EDTA in order to detach macroscopically invisible biomaterial, which was then cytospinned and HE-stained. Associated aetiological and surgical data were collected by reviewing patient files, and ventricular catheter position was examined using preoperative radiology (CT scans).

Results We examined eleven ventricular catheters and ten shunt valves. Catheters: 6/11 catheters contained intraluminal tissue consisting of vascularised glial tissue and inflammatory cells (macrophages/giant cells and a few eosinophils). Catheter adherence correlated with the presence of intraluminal tissue, and all tissue containing catheters had some degree of ventricle wall contact. All obstructed catheters contained intraluminal tissue, except one catheter that was dysfunctional because of lost ventricular contact. Valves: Regardless of intraoperative confirmation of valve obstruction, all ten valves contained an almost uniform cellular response of glial cells (most likely ependymal cells), macrophages/giant cells, and lymphomonocytic cells. Some degree of ventricle wall catheter contact was present in all examined valves with available radiology (9/10).

Conclusions The same cellular responses (i.e., glial cells and inflammatory cells) cause both catheter obstruction and valve obstruction. We propose two synergistic pathophysiological mechanisms. (1) Ventricle wall/parenchymal contact by the catheter causesmechanical irritation of the parenchyma including ependymal exfoliation. (2) The shunt material provokes an inflammatory reaction, either nonspecific or specific. In combination, these mechanisms cause obstructive tissue ingrowth (glial and inflammatory) in the catheter and clogging of the valve by exfoliated glial cells and reactive inflammatory cells.

Category: complications, hydrocephalus

Tagged: , , , ,

Comments are closed.

The Safety and Feasibility of Image-Guided BrainPath-Mediated Trans-Sulcal Hematoma Evacuation

Haptic Virtual Reality Aneurysm Clipping

Subtemporal Approach for AICA Aneurysm Clipping

MCA Aneurysm Anatomical Classification Scheme

Blister Aneurysms of the Internal Carotid Artery

Bypass for Complex Basilar Aneurysms

Basilar Invagination and Atlanto-Axial Dislocation Video 1

Indocyanine Green Videoangiography “In Negative” Video 2

Indocyanine Green Videoangiography “In Negative” Video 1

Management of a Recurrent Coiled Giant Posterior Cerebral Artery Aneurysm

Bypass for Complex Basilar Aneurysms

Expanded Endonasal Approach for 2012 MERC

Endoscopic Endonasal Middle Clinoidectomy Video 1

Endoscopic Endonasal Middle Clinoidectomy Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 1

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 2

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 1

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 2

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 1

NeurosurgeryCNS: Endovascular-Surgical Approach to Cavernous dAVF

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 4

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 3

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 2

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 1

NeurosurgeryCNS: Surgery of AVMs in Motor Areas

NeurosurgeryCNS: The Fenestrated Yaşargil T-Bar Clip

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 3

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 2

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 1

NeurosurgeryCNS. ‘Double-Stick Tape’ Technique for Offending Vessel Transposition in Microvascular Decompression

NeurosurgeryCNS: Advances in the Treatment and Outcome of Brain Stem Cavernous Malformation Surgery: 300 Patients

3T MRI Integrated Neuro Suite

NeurosurgeryCNS: 3D In Vivo Modeling of Vestibular Schwannomas and Surrounding Cranial Nerves Using DIT

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 7

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 6

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 5

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 4

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 3

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 2

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 1

NeurosurgeryCNS: Corticotomy Closure Avoids Subdural Collections After Hemispherotomy

NeurosurgeryCNS: Operative Nuances of Side-to-Side in Situ PICA-PICA Bypass Procedure

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 3

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 2

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 1

NeurosurgeryCNS: Fusiform Aneurysms of the Anterior Communicating Artery

NeurosurgeryCNS. Initial Clinical Experience with a High Definition Exoscope System for Microneurosurgery

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 2

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 1

NeurosurgeryCNS: Typical colloid cyst at the foramen of Monro.

NeurosurgeryCNS: Neuronavigation for Neuroendoscopic Surgery

NeurosurgeryCNS:New Aneurysm Clip System for Particularly Complex Aneurysm Surgery

NeurosurgeryCNS: AICA/PICA Anatomical Variants Penetrating the Subarcuate Fossa Dura

Craniopharyngioma Supra-Orbital Removal

NeurosurgeryCNS: Use of Flexible Hollow-Core CO2 Laser in Microsurgical Resection of CNS Lesions

NeurosurgeryCNS: Ulnar Nerve Decompression

NeurosurgeryCNS: Microvascular decompression for hemifacial spasm

NeurosurgeryCNS: ICG Videoangiography

NeurosurgeryCNS: Inappropiate aneurysm clip applications


32,794
Unique
Visitors
Powered By Google Analytics

Total views

  • 0
%d bloggers like this: