Neurosurgery Blog


Daily bibliographic review of the Neurosurgery Department. La Fe University Hospital. Valencia, Spain

Efficacy and outcomes of facial nerve–sparing treatment approach to cerebellopontine angle meningiomas

J Neurosurg 127:1231–1241, 2017

Advanced microsurgical techniques contribute to reduced morbidity and improved surgical management of meningiomas arising within the cerebellopontine angle (CPA). However, the goal of surgery has evolved to preserve the quality of the patient’s life, even if it means leaving residual tumor. Concurrently, Gamma Knife radiosurgery (GKRS) has become an acceptable and effective treatment modality for newly diagnosed, recurrent, or progressive meningiomas of the CPA. The authors review their institutional experience with CPA meningiomas treated with GKRS, surgery, or a combination of surgery and GKRS. They specifically focus on rates of facial nerve preservation and characterize specific anatomical features of tumor location with respect to the internal auditory canal (IAC).

METHODS Medical records of 76 patients with radiographic evidence or a postoperative diagnosis of CPA meningioma, treated by a single surgeon between 1992 and 2016, were retrospectively reviewed. Patients with CPA meningiomas smaller than 2.5 cm in greatest dimension were treated with GKRS, while patients with tumors 2.5 cm or larger underwent facial nerve–sparing microsurgical resection where appropriate. Various patient, clinical, and tumor data were gathered. Anatomical features of the tumor origin as seen on preoperative imaging confirmed by intraoperative investigation were evaluated for prognostic significance. Facial nerve preservation rates were evaluated.

RESULTS According to our treatment paradigm, 51 (67.1%) patients underwent microsurgical resection and 25 (32.9%) patients underwent GKRS. Gross-total resection (GTR) was achieved in 34 (66.7%) patients, and subtotal resection (STR) in 17 (33.3%) patients. Tumors recurred in 12 (23.5%) patients initially treated surgically, requiring additional surgery and/or GKRS. Facial nerve function was unchanged or improved in 68 (89.5%) patients. Worsening facial nerve function occurred in 8 (10.5%) patients, all of whom had undergone microsurgical resection. Upfront treatment with GKRS for CPA meningiomas smaller than 2.5 cm was associated with preservation of facial nerve function in all patients over a median follow-up of 46 months, regardless of IAC invasion and tumor origin. Anatomical origin was associated with extent of resection but did not correlate with postoperative facial nerve function. Tumor size, extent of resection, and the presence of an arachnoid plane separating the tumor and the contents of the IAC were associated with postoperative facial nerve outcomes.

CONCLUSIONS CPA meningiomas remain challenging lesions to treat, given their proximity to critical neurovascular structures. GKRS is a safe and effective option for managing CPA meningiomas smaller than 2.5 cm without associated mass effect or acute neurological symptoms. Maximal safe resection with preservation of neurological function can be performed for tumors 2.5 cm or larger without significant risk of facial nerve dysfunction, and, when combined with GKRS for recurrence and/or progression, provides excellent disease control. Anatomical features of the tumor origin offer critical insights for optimizing facial nerve preservation in this cohort.

Complications of ventricular entry during craniotomy for brain tumor resection

J Neurosurg 127:426–432, 2017

Recent studies have demonstrated that periventricular tumor location is associated with poorer survival and that tumor location near the ventricle limits the extent of resection. This finding may relate to the perception that ventricular entry leads to further complications and thus surgeons may choose to perform less aggressive resection in these areas. However, there is little support for this view in the literature. This study seeks to determine whether ventricular entry is associated with more complications during craniotomy for brain tumor resection.

METHODS A retrospective analysis of patients who underwent craniotomy for tumor resection at Henry Ford Hospital between January 2010 and November 2012 was conducted. A total of 183 cases were reviewed with attention to operative entry into the ventricular system, postoperative use of an external ventricular drain (EVD), subdural hematoma, hydrocephalus, and symptomatic intraventricular hemorrhage (IVH).

RESULTS Patients in whom the ventricles were entered had significantly higher rates of any complication (46% vs 21%). Complications included development of subdural hygroma, subdural hematoma, intraventricular hemorrhage, subgaleal collection, wound infection, urinary tract infection/deep venous thrombosis, hydrocephalus, and ventriculoperitoneal (VP) shunt placement. Specifically, these patients had significantly higher rates of EVD placement (23% vs 1%, p < 0.001), hydrocephalus (6% vs 0%, p = 0.03), IVH (14% vs 0%, p < 0.001), infection (15% vs 5%, p = 0.04), and subgaleal collection (20% vs 4%, p < 0.001). It was also observed that VP shunt placement was only seen in cases of ventricular entry (11% vs 0%, p = 0.001) with 3 of 4 of these patients having a large ventricular entry (defined here as entry greater than a pinhole [< 3 mm] entry). Furthermore, in a subset of glioblastoma patients with and without ventricular entry, Kaplan- Meier estimates for survival demonstrated a median survival time of 329 days for ventricular entry compared with 522 days for patients with no ventricular entry (HR 1.13, 95% CI 0.65–1.96; p = 0.67).

CONCLUSIONS There are more complications associated with ventricular entry during brain tumor resection than in nonviolated ventricular systems. Better strategies for management of periventricular tumor resection should be actively sought to improve resection and survival for these patients.


Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers

Acta Neurochir (2017) 159:1187–1195

Navigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value.

Methods: The nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications.

Results: nTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here.

Conclusion: At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.

Variability of intraoperative electrostimulation parameters in conscious individuals: language cortex

J Neurosurg 126:1641–1652, 2017

Electrostimulation in awake brain mapping is widely used to guide tumor removal, but methodologies can differ substantially across institutions. The authors studied electrostimulation brain mapping data to characterize the variability of the current intensity threshold across patients and the effect of its variations on the number, type, and surface area of the essential language areas detected.

METHODS Over 7 years, the authors prospectively studied 100 adult patients who were undergoing intraoperative brain mapping during resection of left hemisphere tumors. In all 100 cases, the same protocol of electrostimulation brain mapping (a controlled naming task—bipolar stimulation with biphasic square wave pulses of 1-msec duration and 60-Hz trains, maximum train duration 6 sec) and electrocorticography was used to detect essential language areas.

RESULTS The minimum positive thresholds of stimulation varied from patient to patient; the mean minimum intensity required to detect interference was 4.46 mA (range 1.5–9 mA), and in a substantial proportion of sites (13.5%) interference was detected only at intensities above 6 mA. The threshold varied within a given patient for different naming areas in 22% of cases. Stimulation of the same naming area with greater intensities led to slight changes in the type of response in 19% of cases and different types of responses in 4.5%. Naming sites detected were located in subcentimeter cortical areas (50% were less than 20 mm2), but their extent varied with the intensity of stimulation. During a brain mapping session, the same intensity of stimulation reproduced the same type of interference in 94% of the cases. There was no statistically significant difference between the mean stimulation intensities required to produce interfereince in the left inferior frontal lobe (Broca’s area), the supramarginal gyri, and the posterior temporal region.

CONCLUSIONS Intrasubject and intersubject variations of the minimum thresholds of positive naming areas and changes in the type of response and in the size of these areas according to the intensity used may limit the interpretation of data from electrostimulation in awake brain mapping. To optimize the identification of language areas during electrostimulation brain mapping, it is important to use different intensities of stimulation at the maximum possible currents, avoiding afterdischarges. This could refine the clinical results and scientific data derived from these mapping sessions.

The Impact of Intracranial Tumor Proximity to White Matter Tracts on Morbidity and Mortality

Neurosurgery 80:193–200, 2017

Using difusion tensor imaging (DTI) in neurosurgical planning allows identification of white matter tracts and has been associated with a reduction in postoperative functional deficits.
OBJECTIVE: This study explores the relationship between the lesion-to-tract distance (LTD) and postoperative morbidity and mortality in patients with brain tumors in order to evaluate the role of DTI in predicting postoperative outcomes.

METHODS: Adult patients with brain tumors (n = 60) underwent preoperative DTI. Three major white matter pathways (superior longitudinal fasciculi [SLF], cingulum, and corticospinal tract) were identified using DTI images, and the shortest LTD was measured for each tract. Postoperative morbidity and mortality information was collected from electronic medical records.

RESULTS: The ipsilesional corticospinal tract LTD and left SLF LTD were significantly associated with the occurrence rate of total postoperative motor (P = .018) and language (P < .001) deficits, respectively. The left SLF LTD was also significantly associated with the occurrence rate of new postoperative language deficits (P = .003), and the LTD threshold that best predicted this occurrence was 1 cm (P < .001). Kaplan–Meier log-rank survival analyses in patients having high-grade tumors demonstrated a significantly higher mortality for patients with a left SLF LTD <1 cm (P = .01).

CONCLUSION: Measuring tumor proximity to major white matter tracts using DTI can inform clinicians of the likelihood of postoperative functional deficits. A distance of 1 cm or less from eloquent white matter structures most significantly predicts the occurrence of new deficits with current surgical and imaging techniques.


The Fluoropen: a simple low-cost device to detect intraoperative fluorescein fluorescence in stereotactic needle biopsy of brain tumors

Acta Neurochir (2017) 159:371–375

The use of fluorescein fluorescence-guided stereotactic needle biopsy has been shown to improve diagnostic accuracy and to expedite operative procedure in the stereotactic needle biopsy of high-grade gliomas. We developed a device (Fluoropen) for detecting fluorescence in brain tumor tissues obtained by fluorescein fluorescence-guided stereotactic needle biopsy.

Methods: The Fluoropen is a device consisting of a light source fitted with color filters to create the required emission and visualization wavelengths. The proof-of-concept study consisted of four consecutive patients who underwent fluorescein fluorescence-guided frameless stereotactic biopsy of brain tumor. Each sample was examined for the presence of fluorescence using the Fluoropen and compared with a microscope with fluorescence visualization capability.

Results: A total of six samples were obtained from four stereotactic needle biopsy procedures. Four out of five samples (80%) taken from the contrast-enhancing part of the tumors were shown to be fluorescent under the microscope fitted with fluorescence module and the Fluoropen. One non-contrast enhancing lesion was non-fluorescent using both the microscope fitted with fluorescence module and the Fluoropen. The Fluoropen was shown to have 100% concordance with the microscope fitted with fluorescence module.

Conclusions: The Fluoropen is a low-cost and simple standalone device for the detection of fluorescein fluorescence that can expedite stereotactic needle biopsy by providing instant confirmation of the diagnostic sample and therefore avoid the need for an intraoperative frozen section. In patients with non-contrast enhancing tumors and those who were pre-treated with dexamethasone prior to surgery, fluorescein fluorescence-guided stereotactic needle biopsy will need to be used with caution.

Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors

Acta Neurochir (2016) 158:2277–2289

For the navigation of transcranial magnetic stimulation (TMS), various techniques are available. Yet, there are two basic principles underlying them all: electric-fieldnavigated transcranial magnetic stimulation (En-TMS) and line-navigated transcranial magnetic stimulation (Ln-TMS). The current study was designed to compare both methods.

Methods To explore whether there is a difference in clinical applicability, workflow, and mapping results of both techniques, we systematically compared motor mapping via EnTMS and Ln-TMS in 12 patients suffering from brain tumors.

Results The number of motor-positive stimulation spots and the ratio of positive spots per overall stimulation numbers were significantly higher for En-TMS (motor-positive spots: EnTMS vs. Ln-TMS: 128.3 ± 35.0 vs. 41.3 ± 26.8, p < 0.0001; ratio of motor-positive spots per number of stimulations: EnTMS vs. Ln-TMS: 38.0 ± 9.2 % vs. 20.0 ± 14.4 %, p = 0.0031). Distances between the En-TMS and Ln-TMS motor hotspots were 8.3 ± 4.4 mm on the ipsilesional and 8.6 ± 4.5 mm on the contralesional hemisphere (p = 0.9124).

Conclusions The present study compares En-TMS and LnTMS motor mapping in the neurosurgical context for the first time. Although both TMS systems tested in the present study are explicitly designed for application during motor mapping in patients with brain lesions, there are differences in applicability, workflow, and results between En-TMS and Ln-TMS, which should be distinctly considered during clinical use of the technique. However, to draw final conclusions about accuracy, confirmation of motor-positive Ln-TMS spots by intraoperative stimulation is crucial within the scope of upcoming investigations.

Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery

Neurosurgery 79:856–871, 2016

Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense.

OBJECTIVE: To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease.

METHODS: Fifteen patients were identified and administered a Food and Drug Administration-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) before surgical resection. An NIR camera was utilized to localize the tumor before resection and to visualize surgical margins following resection. Neuropathology and magnetic resonance imaging data were used to assess the accuracy and precision of NIR fluorescence in identifying tumor tissue.

RESULTS: NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low-grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12 of 15 tumors were visualized with the NIR camera. The mean signal-tobackground ratio was 9.5 6 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with signal-to-background ratio (P = .03). Nonenhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71).

CONCLUSION: With the use of Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity.

Supratentorial hemispheric ependymomas: an analysis of 109 adults for survival and prognostic factors

supratentorial hemispheric ependymomas

J Neurosurg 125:410–418, 2016

Survival rates and prognostic factors for supratentorial hemispheric ependymomas have not been determined. The authors therefore designed a retrospective study to determine progression-free survival (PFS), overall sur- vival (OS), and prognostic factors for hemispheric ependymomas.

Methods: The study population consisted of 8 patients from our institution and 101 patients from the literature with disaggregated survival information (n = 109). Patient age, sex, tumor side, tumor location, extent of resection (EOR), tumor grade, postoperative chemotherapy, radiation, time to recurrence, and survival were recorded. Kaplan-Meier survival analyses and Cox proportional hazard models were completed to determine survival rates and prognostic factors.

Results: Anaplastic histology/WHO Grade III tumors were identifed in 62% of cases and correlated with older age. Three-, 5-, and 10-year PFS rates were 57%, 51%, and 42%, respectively. Three-, 5-, and 10-year OS rates were 77%, 71%, and 58%, respectively. EOR and tumor grade were identifed on both Kaplan-Meier log-rank testing and univariate Cox proportional hazard models as prognostic for PFS and OS. Both EOR and tumor grade remained prognostic on multivariate analysis. Subtotal resection (STR) predicted a worse PFS (hazard ratio [HR] 4.764, p = 0.001) and OS (HR 4.216, p = 0.008). Subgroup survival analysis of patients with STR demonstrated a 5- and 10-year OS of 28% and 0%, respectively. WHO Grade III tumors also had worse PFS (HR 10.2, p = 0.004) and OS (HR 9.1, p = 0.035). Patients with WHO Grade III tumors demonstrated 5- and 10-year OS of 61% and 46%, respectively. Postoperative radiation was not prognostic for PFS or OS.

Conclusions: A high incidence of anaplastic histology was found in hemispheric ependymomas and was associated with older age. EOR and tumor grade were prognostic factors for PFS and OS on multivariate analysis. STR or WHO Grade III pathology, or both, predicted worse overall prognosis in patients with hemispheric ependymoma.

Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas

Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball ber tractography in patients with gliomas

J Neurosurg 125:33–45, 2016

Diffusion MRI has uniquely enabled in vivo delineation of white matter tracts, which has been applied to the segmentation of eloquent pathways for intraoperative mapping. The last decade has also seen the development from earlier diffusion tensor models to higher-order models, which take advantage of high angular resolution diffusion-weighted imaging (HARDI) techniques. However, these advanced methods have not been widely implemented for routine preoperative and intraoperative mapping. The authors report on the application of residual bootstrap q-ball fiber tracking for routine mapping of potentially functional language pathways, the development of a system for rating tract injury to evaluate the impact on clinically assessed language function, and initial results predicting long-term language deficits following glioma resection.

Methods: The authors have developed methods for the segmentation of 8 putative language pathways including dorsal phonological pathways and ventral semantic streams using residual bootstrap q-ball fiber tracking. Furthermore, they have implemented clinically feasible preoperative acquisition and processing of HARDI data to delineate these pathways for neurosurgical application. They have also developed a rating scale based on the altered fiber tract density to estimate the degree of pathway injury, applying these ratings to a subset of 35 patients with pre- and postoperative fiber tracking. The relationships between specific pathways and clinical language deficits were assessed to determine which pathways are predictive of long-term language deficits following surgery.

Results: This tracking methodology has been routinely implemented for preoperative mapping in patients with brain gliomas who have undergone awake brain tumor resection at the University of California, San Francisco (more than 300 patients to date). In this particular study the authors investigated the white matter structure status and language correlation in a subcohort of 35 subjects both pre- and postsurgery. The rating scales developed for fiber pathway damage were found to be highly reproducible and provided significant correlations with language performance. Preservation of the left arcuate fasciculus (AF) and the temporoparietal component of the superior longitudinal fasciculus (SLF-tp) was consistent in all patients without language deficits (p < 0.001) at the long-term follow-up. Furthermore, in patients with short-term language deficits, the AF and/or SLF-tp were affected, and damage to these 2 pathways was predictive of a long-term language deficit (p = 0.005).

Conclusions: The authors demonstrated the successful application of q-ball tracking in presurgical planning for language pathways in brain tumor patients and in assessing white matter tract integrity postoperatively to predict long-term language dysfunction. These initial results predicting long-term language deficits following tumor resection indicate that postoperative injury to dorsal language pathways may be prognostic for long-term clinical language deficits. Study results suggest the importance of dorsal stream tract preservation to reduce language deficits in patients undergoing glioma resection, as well as the potential prognostic value of assessing postoperative injury to dorsal language pathways to predict long-term clinical language deficits.

Neuropsychological deficits of vmPFC meningiomas

The cognitive and behavioral effects of meningioma lesions involving the ventromedial prefrontal cortex

J Neurosurg 124:1568–1577, 2016

Anterior skull base meningiomas are frequently associated with changes in personality and behavior. Although such meningiomas often damage the ventromedial prefrontal cortex (vmPFC), which is important for higher cognition, the cognitive and behavioral effects of these meningiomas remain poorly understood. Using detailed neuropsychological assessments in a large series of patients, this study examined the cognitive and behavioral effects of meningioma lesions involving the vmPFC.

Methods: The authors reviewed neuropsychology and lesion mapping records of 70 patients who underwent resection of meningiomas. The patients were drawn from the Neurological Patient Registry at the University of Iowa. Patients were sorted into 2 groups: those with lesions involving the vmPFC and those with lesions that did not involve the vmPFC. Neuropsychological data pertaining to a comprehensive array of cognitive and behavioral domains were available preoperatively in 20 patients and postoperatively in all 70 patients.

Results: No change occurred in basic cognitive functions (e.g., attention, perception, memory, construction and motor performance, language, or executive functions) from the preoperative to postoperative epochs for the vmPFC and non-vmPFC groups. There was a significant decline in the behavioral domain, specifically adaptive function, for both the vmPFC and non-vmPFC groups, and this decline was more pronounced for the vmPFC group. Additionally, postoperative data indicated that the vmPFC group had a specific deficit in value-based decision making, as evidenced by poor performance on the Iowa Gambling Task, compared with the non-vmPFC group. The vmPFC and non-vmPFC groups did not differ postoperatively on other cognitive measures, including intellect, memory, language, and perception.

Conclusions: Lesions of the vmPFC resulting from meningiomas are associated with specific deficits in adaptive function and value-based decision making. Meningioma patients showed a decline in adaptive function postoperatively, and this decline was especially notable in patients with vmPFC region meningiomas. Early detection and resection of meningiomas of the anterior skull base (involving the gyrus rectus) may prevent these deficits.

Neurocognitive Changes Associated With Surgical Resection of Left and Right Temporal Lobe Glioma

Temporal lobe tumor

Neurosurgery 77:777–785, 2015

Little is known regarding the neurocognitive impact of temporal lobe tumor resection.

OBJECTIVE: To clarify subacute surgery-related changes in neurocognitive functioning (NCF) in patients with left (LTL) and right (RTL) temporal lobe glioma.

METHODS: Patients with glioma in the LTL (n = 45) or RTL (n = 19) completed comprehensive pre- and postsurgical neuropsychological assessments. NCF was analyzed with 2-way mixed design repeated-measures analysis of variance, with hemisphere (LTL or RTL) as an independent between-subjects factor and pre- and postoperative NCF as a within-subjects factor.

RESULTS: About 60% of patients with LTL glioma and 40% with RTL lesions exhibited significant worsening on at least 1 NCF test. Domains most commonly impacted included verbal memory and executive functioning. Patients with LTL tumor showed greater decline than patients with RTL tumor on verbal memory and confrontation naming tests. Nonetheless, over one-third of patients with RTL lesions also showed verbal memory decline.

CONCLUSION: In patients with temporal lobe glioma, NCF decline in the subacute postoperative period is common. As expected, patients with LTL tumor show more frequent and severe decline than patients with RTL tumor, particularly on verbally mediated measures. However, a considerable proportion of patients with RTL tumor also exhibit decline across various domains, even those typically associated with left hemisphere structures, such as verbal memory. While patients with RTL lesions may show even greater decline in visuospatial memory, this domain was not assessed. Nonetheless, neuropsychological assessment can identify acquired deficits and help facilitate early intervention in patients with temporal lobe glioma.

Contemporary frameless intracranial biopsy techniques: Might variation in safety and efficacy be expected?


Acta Neurochir (2015) 157:2011–2016

Frameless stereotactic neuronavigation has proven to be a feasible technology to acquire brain biopsies with good accuracy and little morbidity and mortality. New systems are constantly introduced into the neurosurgical armamentarium, although few studies have actually evaluated and compared the diagnostic yield, morbidity, and mortality of various manufacturer’s frameless neuronavigation systems. The present study reports our experience with brain biopsy procedures performed using both the Medtronic Stealth TreonTM Vertek® and BrainLAB® Varioguide frameless stereotactic brain biopsy systems.

Patients and methods All 247 consecutive biopsies from January 2008 until May 2013 were evaluated retrospectively. One hundred two biopsies each were performed using the Medtronic (2008–2009) and BrainLAB® system (2011– 2013), respectively. The year 2010 was considered a transition year, in which 43 biopsies were performed with either system. Patient demographics, perioperative characteristics, and histological diagnosis were reviewed, and a comparison was made between the two brain biopsy systems.

Results The overall diagnostic yield was 94.6 %, i.e., 11 biopsies were nondiagnostic, 5 (4.9 %) with the Medtronic and 6 (5.9 %) with the BrainLAB® system. No differences besides the operating time (108 vs 120 min) were found between the two biopsy methods. On average, 6.6 tissue samples were taken with either technique. Peri- and postoperative complications were seen in 5.3 % and 12.9 %, consisting of three symptomatic hemorrhages (1.2 %). Biopsy-related mortality occurred in 0.8 % of all biopsies.

Conclusions Regarding diagnostic yield, complication rate, and biopsy-related mortality, there seems to be no difference between the frameless biopsy technique from Medtronic and BrainLAB®. In contemporary time, the neurosurgeon has many tools to choose from, all with a relatively fast learning curve and ever improving feasibility. Thus, the issue of choice involves not the results, but the familiarity, end-user friendliness, and overall comfort when operating the system.

Assessing Bimanual Performance in Brain Tumor Resection With NeuroTouch, a Virtual Reality Simulator

Assessing Bimanual Performance in Brain Tumor Resection With NeuroTouch, a Virtual Reality Simulator

Operative Neurosurgery 11:89–98, 2015

Validated procedures to objectively measure neurosurgical bimanual psychomotor skills are unavailable. The NeuroTouch simulator provides metrics to determine bimanual performance, but validation is essential before implementation of this platform into neurosurgical training, assessment, and curriculum development.

OBJECTIVE: To develop, evaluate, and validate neurosurgical bimanual performance metrics for resection of simulated brain tumors with NeuroTouch.

METHODS: Bimanual resection of 8 simulated brain tumors with differing color, stiffness, and border complexity was evaluated. Metrics assessed included blood loss, tumor percentage resected, total simulated normal brain volume removed, total tip path lengths, maximum and sum of forces used by instruments, efficiency index, ultrasonic aspirator path length index, coordination index, and ultrasonic aspirator bimanual forces ratio. Six neurosurgeons and 12 residents (6 senior and 6 junior) were evaluated.

RESULTS: Increasing tumor complexity impaired resident bimanual performance significantly more than neurosurgeons. Operating on black vs glioma-colored tumors resulted in significantly higher blood loss and lower tumor percentage, whereas altering tactile cues from hard to soft decreased resident tumor resection. Regardless of tumor complexity, significant differences were found between neurosurgeons, senior residents, and junior residents in efficiency index and ultrasonic aspirator path length index. Ultrasonic aspirator bimanual force ratio outlined significant differences between senior and junior residents, whereas coordination index demonstrated significant differences between junior residents and neurosurgeons.

CONCLUSION: The NeuroTouch platform incorporating the simulated scenarios and metrics used differentiates novice from expert neurosurgical performance, demonstrating NeuroTouch face, content, and construct validity and the possibility of developing brain tumor resection proficiency performance benchmarks.

Patient response to awake craniotomy

awake craniotomy

Acta Neurochir (2014) 156:1063–1070

Awake craniotomy is a valuable procedure since it allows brain mapping and live monitoring of eloquent brain functions. The advantage of minimizing resource utilization is also emphasized by some physicians in North America. Data on how well an awake craniotomy is tolerated by patients and how much stress it creates is available from different studies, but this topic has not consequently been summarized in a review of the available literature. Therefore, it is the purpose of this review to shed more light on the still controversially discussed aspect of an awake craniotomy.

Methods We reviewed the available English literature published until December 2013 searching for studies that investigated patients’ responses to awake craniotomies.

Results Twelve studies, published between 1998 and 2013, including 396 patients with awake surgery were identified. Eleven of these 12 studies set the focus on the perioperative time, one study focused on the later postoperative time. The vast majority of patients felt well prepared and overall satisfaction with the procedure was high. In the majority of studies up to 30 % of the patients recalled considerable pain and 10– 14 % experienced strong anxiety during the procedure. The majority of patients reported that they would undergo an awake craniotomy again. A post traumatic stress disorder was present neither shortly nor years after surgery. However, a normal human response to such an exceptional situation can for instance be the delayed appearance of unintentional distressing recollections of the event despite the patients’ satisfaction concerning the procedure.

Conclusions For selected patients, an awake craniotomy presents the best possible way to reduce the risk of surgery related neurological deficits. However, benefits and burdens of this type of procedure should be carefully considered when planning an awake craniotomy and the decision should serve the interests of the patient.

Medial acoustic neuromas: clinical and surgical implications

Medial VIII schwannoma

J Neurosurg 120:1095–1104, 2014

Medial acoustic neuroma is a rare entity that confers a distinct clinical syndrome. It is scarcely discussed in the literature and is associated with adverse features. This study evaluates the clinical and imaging features, pertinent surgical challenges, and treatment outcome in a large series of this variant. The authors postulate that the particular pathological anatomy with its arachnoidal rearrangement has a profound implication on the surgical technique and outcome.

Methods. The authors conducted a retrospective analysis of 52 cases involving 33 women and 19 men who underwent resection of medial acoustic neuromas performed by the senior author (O.A.) over a 20-year period (1993– 2013). Clinical, radiological, and operative records were reviewed, with a specific focus on the neurological outcomes and facial nerve function and hearing preservation. Intraoperative findings were analyzed with respect to the effect of arachnoidal arrangement on the surgeon’s ability to resect the lesion and the impact on postoperative function.

Results. The average tumor size was 34.5 mm (maximum diameter), with over 90% of tumors being 25 mm or larger and 71% being cystic. Cerebellar, trigeminal nerve, and facial nerve dysfunction were common preoperative findings. Hydrocephalus was present in 11 patients. Distinguishing intraoperative findings included marked tumor adherence to the brainstem and frequent hypervascularity, which prompted intracapsular dissection resulting in enhancement on postoperative MRI in 18 cases, with only 3 demonstrating growth on follow-up. There was no mortality or major postoperative neurological deficit. Cerebrospinal fluid leak was encountered in 7 patients, with 4 requiring surgical repair. Among 45 patients who had intact preoperative facial function, only 1 had permanent facial nerve paralysis on extended follow-up. Of the patients with preoperative Grade I–II facial function, 87% continued to have Grade I–II function on follow-up. Of 10 patients who had Class A hearing preoperatively, 5 continued to have Class A or B hearing after surgery.

Conclusions. Medial acoustic neuromas represent a rare subgroup whose site of origin and growth patterns produce a distinct clinical presentation and present specific operative challenges. They reach giant size and are frequently cystic and hypervascular. Their origin and growth pattern lead to arachnoidal rearrangement with marked adherence against the brainstem, which is critical in the surgical management. Excellent surgical outcome is achievable with a high rate of facial nerve function and attainable hearing preservation. These results suggest that similar or better results may be achieved in less complex tumors.

Intraoperative Contrast-Enhanced Ultrasound for Brain Tumor Surgery


Neurosurgery 74:542–552, 2014 

Contrast-enhanced ultrasound (CEUS) is a dynamic and continuous modality that offers a real-time, direct view of vascularization patterns and tissue resistance for many organs. Thanks to newer ultrasound contrast agents, CEUS has become a wellestablished, live-imaging technique in many contexts, but it has never been used extensively for brain imaging. The use of intraoperative CEUS (iCEUS) imaging in neurosurgery is limited.

OBJECTIVE: To provide the first dynamic and continuous iCEUS evaluation of a variety of brain lesions.

METHODS: We evaluated 71 patients undergoing iCEUS imaging in an off-label setting while being operated on for different brain lesions; iCEUS imaging was obtained before resecting each lesion, after intravenous injection of ultrasound contrast agent. A semiquantitative, offline interobserver analysis was performed to visualize each brain lesion and to characterize its perfusion features, correlated with histopathology.

RESULTS: In all cases, the brain lesion was visualized intraoperatively with iCEUS. The afferent and efferent blood vessels were identified, allowing evaluation of the time and features of the arterial and venous phases and facilitating the surgical strategy. iCEUS also proved to be useful in highlighting the lesion compared with standard B-mode imaging and showing its perfusion patterns. No adverse effects were observed.

CONCLUSION: Our study is the first large-scale implementation of iCEUS in neurosurgery as a dynamic and continuous real-time imaging tool for brain surgery and provides the first iCEUS characterization of different brain neoplasms. The ability of CEUS to highlight and characterize brain tumor will possibly provide the neurosurgeon with important information anytime during a surgical procedure.

Surgical strategy in grade II astrocytoma

Surgical strategy in grade II astrocytoma

Acta Neurochir (2013) 155:2227–2235

We recently demonstrated a survival benefit of early resection in unselected diffuse low-grade gliomas (LGG). However, heterogeneity within the LGG entity warrants investigation in a homogenous subgroup. Astrocytoma represents the largest subgroup of LGG, and is characterized by diffuse growth and inferior prognosis. We aimed to study the effects of early resection compared to biopsy and watchful waiting in this subgroup.

Methods Patient data was retrospectively reviewed in two neurosurgical departments with regional referral practice. In one hospital, initial diagnostic biopsies and watchful waiting was favored, while early resections guided with three-dimensional (3D) ultrasound were advocated in the other hospital. This created a natural experiment with patient management heavy influenced by residential address. In the hospitals’ histopathology databases, all adult patients diagnosed with supratentorial LGG from 1998 through 2009 were screened (n =169) and underwent blinded histopathological review. Histopathological review concluded with 117 patients with grade II astrocytomas that were included in the present study. The primary end-point was overall survival assessed by a regional comparison.

Results Early resections were performed in 51 (82 %) versus 12 (22 %) patients in the respective hospitals (p <0.001). The two patient populations were otherwise similar. Median survival was 9.7 years (95 % CI 7.5–11.9) if treated in the hospital favoring early resections compared to 5.6 years (95 % CI 3.5– 7.6) if treated at the hospital favoring biopsy and watchful waiting (p =0.047). No difference in surgical-related neurological morbidity was seen (p =0.843).

Conclusions Early 3D ultrasound guided resections improve survival, apparently without increasedmorbidity, compared to biopsy and watchful waiting in patients with diffuse World Health Organization (WHO) grade II astrocytomas.

Biopsy of the Superficial Cortex: Predictors of Effectiveness and Outcomes

Biopsy of the Superficial Cortex

Neurosurgery 73:224–232, 2013 

Brain biopsies of superficial cortex are performed for diagnosis of neurological diseases, but preoperative predictors of successful diagnosis and risks are lacking.

OBJECTIVE: We evaluated effectiveness and outcomes of superficial cortical biopsies and determined preoperative predictors of diagnosis, outcomes, morbidities, and mortality.

METHODS: A single-institution retrospective analysis of 170 patients who underwent open brain biopsies of superficial cortex was performed. Clinical predictors of effectiveness and outcomes were determined using univariate/multivariate analyses and a system for risk-benefit stratification was created and tested.

RESULTS: Brain biopsies led to successful diagnosis in 122 of 170 (71.8%) and affected management in 97 of 170 (57.1%) cases. Factors increasing the odds of diagnostic pathology included age older than 45 years (odds ratio [OR]: 2.67, 95% confidence interval [CI]: 1.34-5.27, P < .01), previous cancer diagnosis (OR: 3.64, 95% CI: 1.69-7.85, P < .001), focal (OR: 3.90, 95% CI: 1.91-8.00, P< .001) and enhancing (OR: 5.03, 95% CI: 2.41-10.52, P< .001) lesions on magnetic resonance imaging, biopsy of specific lesions on magnetic resonance imaging (OR: 9.34, 95% CI: 4.29-20.33, P < .001), and use of intraoperative navigation (OR: 6.59, 95% CI: 3.04-14.28, P < .001). Brain biopsies led to symptomatic intracranial hemorrhage, seizures, other significant morbidities, and perioperative mortality in 12.4%, 16.2%, 37.1%, and 8% of cases, respectively. Risk of postoperative intracranial hemorrhage was increased by a history of aspirin use (OR: 2.51, 95% CI: 1.23-5.28, P < .05) and age older than 60 years (OR: 2.66, 95% CI: 1.36-5.18, P < .01).

CONCLUSION: Effectiveness and risk of morbidity/mortality can be estimated preoperatively for patients undergoing open brain biopsies of the superficial cortex. Older age and specific imaging characteristics increase the odds of diagnostic biopsy. Conversely, older age and aspirin use increases the risk of postoperative complications.

Transcerebellomedullary fissure approach to lesions of the fourth ventricle: less is more?


Acta Neurochir (2013) 155:1011–1016

The transcerebellomedullary fissure (trans-CMF) approach is safe and effective. Nevertheless, previous research documented a few differences in the use of this approach with regard to the opening portion of the fissure and roof of the ventricle. Here, we present a series of patients with fourth ventricular lesions and our experience using the trans-CMF approach.

Methods Fifty patients who underwent the trans-CMF approach were analyzed. The tela choroidea was simply incised in 32 patients: 27 unilaterally and 5 bilaterally. Both the tela and inferior medullary velum were cut in 18 patients: 16 unilaterally and 2 bilaterally. Unless the tumor extended below the C1 level, C1 was preserved intact. Brainstem mapping (BSM) and corticobulbar tract (CBT) motor-evoked potential (MEP) monitoring were used.

Results Gross total removal was achieved in 41 (82 %) cases, and sub-total removal was achieved in 9 (18 %) cases. Two deaths occurred 1–2 months postoperatively because of pulmonary complications. Four patients developed temporary mutism, all of whom underwent the bilateral trans-CMF approach (this rate is significantly higher than that of the unilateral approach, P<0.05). No permanent neurological deficit occurred.

Conclusion The trans-CMF approach provides excellent access to fourth ventricular lesions without splitting the vermis. The opening portion of the fissure and roof of the ventricle should be determined by the location, extension and size of the lesion. In most cases, the unilateral trans- CMF approach with only a tela choroidea incision is adequate; this procedure is mini-invasive and possibly prevents postoperative mutism.

Neurosurgery Department. “La Fe” University Hospital. Valencia, Spain


Amazon Shop

Basilar Invagination and Atlanto-Axial Dislocation Video 1

The Safety and Feasibility of Image-Guided BrainPath-Mediated Trans-Sulcal Hematoma Evacuation

Haptic Virtual Reality Aneurysm Clipping

Subtemporal Approach for AICA Aneurysm Clipping

MCA Aneurysm Anatomical Classification Scheme

Blister Aneurysms of the Internal Carotid Artery

Bypass for Complex Basilar Aneurysms

Indocyanine Green Videoangiography “In Negative” Video 2

Indocyanine Green Videoangiography “In Negative” Video 1

Management of a Recurrent Coiled Giant Posterior Cerebral Artery Aneurysm

Bypass for Complex Basilar Aneurysms

Expanded Endonasal Approach for 2012 MERC

Endoscopic Endonasal Middle Clinoidectomy Video 1

Endoscopic Endonasal Middle Clinoidectomy Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 2

Neurosurgery CNS: Flash Fluorescence for MCA Bypass Video 1

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 2

Neurosurgery CNS: Endoscopic Transventricular Lamina Terminalis Fenestration Video 1

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 2

Neurosurgery CNS: Surgery for Giant PCOM Aneurysms Video 1

NeurosurgeryCNS: Endovascular-Surgical Approach to Cavernous dAVF

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 4

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 3

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 2

Neurosurgery CNS: Lateral Supraorbital Approach Applied to Anterior Clinoidal Meningiomas Video 1

NeurosurgeryCNS: Surgery of AVMs in Motor Areas

NeurosurgeryCNS: The Fenestrated Yaşargil T-Bar Clip

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 3

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 2

NeurosurgeryCNS: Cotton-Clipping Technique to Repair Intraoperative Aneurysm Neck Tear Video 1

NeurosurgeryCNS. ‘Double-Stick Tape’ Technique for Offending Vessel Transposition in Microvascular Decompression

NeurosurgeryCNS: Advances in the Treatment and Outcome of Brain Stem Cavernous Malformation Surgery: 300 Patients

3T MRI Integrated Neuro Suite

NeurosurgeryCNS: 3D In Vivo Modeling of Vestibular Schwannomas and Surrounding Cranial Nerves Using DIT

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 7

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 6

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 5

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 4

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 3

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 2

NeurosurgeryCNS: Microsurgery for Previously Coiled Aneurysms: Experience on 81 Patients: Video 1

NeurosurgeryCNS: Corticotomy Closure Avoids Subdural Collections After Hemispherotomy

NeurosurgeryCNS: Operative Nuances of Side-to-Side in Situ PICA-PICA Bypass Procedure

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 3

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 2

NeurosurgeryCNS. Waterjet Dissection in Neurosurgery: An Update After 208 Procedures: Video 1

NeurosurgeryCNS: Fusiform Aneurysms of the Anterior Communicating Artery

NeurosurgeryCNS. Initial Clinical Experience with a High Definition Exoscope System for Microneurosurgery

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 2

NeurosurgeryCNS: Endoscopic Treatment of Arachnoid Cysts Video 1

NeurosurgeryCNS: Typical colloid cyst at the foramen of Monro.

NeurosurgeryCNS: Neuronavigation for Neuroendoscopic Surgery

NeurosurgeryCNS:New Aneurysm Clip System for Particularly Complex Aneurysm Surgery

NeurosurgeryCNS: AICA/PICA Anatomical Variants Penetrating the Subarcuate Fossa Dura

Craniopharyngioma Supra-Orbital Removal

NeurosurgeryCNS: Use of Flexible Hollow-Core CO2 Laser in Microsurgical Resection of CNS Lesions

NeurosurgeryCNS: Ulnar Nerve Decompression

NeurosurgeryCNS: Microvascular decompression for hemifacial spasm

NeurosurgeryCNS: ICG Videoangiography

NeurosurgeryCNS: Inappropiate aneurysm clip applications

Powered By Google Analytics

Total views

  • 0
%d bloggers like this: