Role of the parietooccipital fissure and its implications in the pathophysiology of posterior medial temporal gliomas

J Neurosurg 137:505–514, 2022

The parietooccipital fissure is an anatomical landmark that divides the temporal, occipital, and parietal lobes. More than 40% of gliomas are located in these three lobes, and the temporal lobe is the most common location. The parietooccipital fissure is located just posterior to the medial temporal lobe, but little is known about the clinical significance of this fissure in gliomas. The authors investigated the anatomical correlations between the parietooccipital fissure and posterior medial temporal gliomas to reveal the radiological features and unique invasion patterns of these gliomas.

METHODS The authors retrospectively reviewed records of all posterior medial temporal glioma patients treated at their institutions and examined the parietooccipital fissure. To clarify how the surrounding structures were invaded in each case, the authors categorized tumor invasion as being toward the parietal lobe, occipital lobe, isthmus of the cingulate gyrus, insula/basal ganglia, or splenium of the corpus callosum. DSI Studio was used to visualize the fiber tractography running through the posterior medial temporal lobe.

RESULTS Twenty-four patients with posterior medial temporal gliomas were identified. All patients presented with a parietooccipital fissure as an uninterrupted straight sulcus and as the posterior border of the tumor. Invasion direction was toward the parietal lobe in 13 patients, the occipital lobe in 4 patients, the isthmus of the cingulate gyrus in 19 patients, the insula/basal ganglia in 3 patients, and the splenium of the corpus callosum in 8 patients. Although the isthmus of the cingulate gyrus and the occipital lobe are located just posterior to the posterior medial temporal lobe, there was a significantly greater preponderance of invasion toward the isthmus of the cingulate gyrus than toward the occipital lobe (p = 0.00030, McNemar test). Based on Schramm’s classification for the medial temporal tumors, 4 patients had type A and 20 patients had type D tumors. The parietooccipital fissure determined the posterior border of the tumors, resulting in a unique and identical radiological feature. Diffusion spectrum imaging (DSI) tractography indicated that the fibers running through the posterior medial temporal lobe toward the occipital lobe had to detour laterally around the bottom of the parietooccipital fissure.

CONCLUSIONS Posterior medial temporal gliomas present identical invasion patterns, resulting in unique radiological features that are strongly affected by the parietooccipital fissure. The parietooccipital fissure is a key anatomical landmark for understanding the complex infiltrating architecture of posterior medial temporal gliomas.


Clinical Evaluation of Cingulum Bundle Connectivity for Neurosurgical Hypothesis Development

Neurosurgery 86:724–735, 2020

The cingulum bundle (CB) has long been a target for psychiatric neurosurgical procedures, but with limited understanding of the brain networks being impacted. Recent advances in human tractography could provide a foundation to better understand the effects of neurosurgical interventions on the CB; however, the reliability of tractography remains in question.

OBJECTIVE: To evaluate the ability of different tractography techniques, derived from typical, human diffusion-weighted imaging (DWI) data, to characterize CB connectivity described in animalmodels. This will help validate the clinical applicability of tractography, and generate insight on current and future neurosurgical targets for psychiatric disorders.

METHODS: Connectivity of the CB in 15 healthy human subjects was evaluated using DWI based tractography, and compared to tract-tracing findings from nonhuman primates. Brain regions of interestwere defined to coincide with the animalmodel. Tractographywas performed using 3 techniques (FSL probabilistic, Camino probabilistic, and Camino deterministic). Differences in connectivity were assessed, and the CB segment with the greatest connectivity was determined.

RESULTS: Each tractography technique successfully reproduced the animal tracing model with amean accuracy of 72%(68-75%, P<.05).Additionally, one region of the CB, the rostral dorsal segment, had significantly greater connectivity to associated brain structures than all other CB segments (P< .05).

CONCLUSION: Noninvasive, in vivo human analysis of the CB, using clinically available DWI for tractography, consistently reproduced the results of an animal tract-tracing model. This suggests that tractography of the CB can be used for clinical applications, which may aid in neurosurgical targeting for psychiatric disorders.