Use of 5-ALA fluorescence–guided surgery versus white-light conventional microsurgery for the resection of newly diagnosed glioblastomas (RESECT study): a French multicenter randomized phase III study

J Neurosurg 140:987–1000, 2024

Only one phase III prospective randomized study, published in 2006, has assessed the performance of 5-aminolevulinic acid (5-ALA) fluorescence–guided surgery (FGS) for glioblastoma resection. The aim of the RESECT study was to compare the onco-functional results associated with 5-ALA fluorescence and with white-light conventional microsurgery in patients with glioblastoma managed according to the current standards of care.

METHODS This was a phase III prospective randomized single-blinded study, involving 21 French neurosurgical centers, comparing 5-ALA FGS with white-light conventional microsurgery in patients with glioblastoma managed according to the current standards of care, including neuronavigation use and postoperative radiochemotherapy. Randomization was performed in a 1:1 ratio stratified by institution. 5-ALA (20 mg/kg) or placebo (ascorbic acid) was administered orally 3–5 hours before the incision. The primary endpoint was the rate of gross-total resection (GTR) blindly assessed by an independent committee. Patients without a confirmed pathological diagnosis of glioblastoma or with unavailable postoperative MRI studies were excluded from the per-protocol analysis.

RESULTS Between March 2013 and August 2016, a total of 171 patients were assigned to the 5-ALA fluorescence group (n = 88) or to the placebo group (n = 83). Twenty-four cases were excluded because the WHO histological criteria of grade 4 glioma were not met. The proportion of GTR was significantly higher in the 5-ALA fluorescence group (53/67, 79.1%) than in the placebo group (33/69, 47.8%; p = 0.0002). After adjustment for age, preoperative Karnofsky Performance Scale score, and tumor location, GTR was still associated with 5-ALA fluorescence (OR 4.13 [95% CI 1.94–8.79]). The mean 7-day postoperative Karnofsky Performance Scale score (≥ 80% in 49/71, 69.0% [5-ALA group]; 50/71, 70.4% [placebo group], p = 0.86) and the proportion of patients with a worsened neurological status 3 months postoperatively (9/68, 13.2% [5-ALA group]; 9/70, 12.9% [placebo group], p = 0.95) were similar between groups. Adverse events related to 5-ALA intake were rare and consisted of photosensitization in 4/87 (4.6%) patients and hepatic cytolysis in 1/87 (1.1%) patients. The 6-month PFS (70.2% [95% CI 57.7%–79.6%] and 68.4% [95% CI 55.7%–78.1%]; p =0.39) and 24-month OS (30.1% [95% CI 18.9%–42.0%] and 37.7% [95% CI 25.8%–49.5%]; p = 0.89) did not significantly differ. In multivariate analysis, GTR was an independent predictor of PFS (hazard ratio 0.56 [95% CI 0.36–0.86], p =0.008) and OS (hazard ratio 0.65 [95% CI 0.42–1.01], p = 0.05). The use of 5-ALA FGS generates a significant extra cost of 2732.36€ (95% CI 1658.40€–3794.11€).

CONCLUSIONS The authors found that 5-ALA FGS is an easy-to-use, cost-effective, and minimally time-consuming technique that safely optimizes the extent of resection in patients harboring glioblastoma amenable to a large resection.

Sodium fluorescein uptake by the tumor microenvironment in human gliomas and brain metastases

J Neurosurg 140:958–967, 2024

Intravenous sodium fluorescein (SF) is increasingly used during surgery of gliomas and brain metastases to improve tumor resection. Currently, SF is believed to permeate the brain regions where the blood-brain barrier (BBB) is damaged and to accumulate in the extracellular space but not in tumor or healthy cells, making it possible to demarcate tumor margins to guide resection. By evaluating the immune contexture of a number of freshly resected gliomas and brain metastases from patients undergoing SF-guided surgery, the authors recurrently observed fluorescence-positive cells. Therefore, the aim of this study was to determine if SF accumulates inside the cells of the tumor microenvironment (TME), and if so, in which type of cells, and whether incorporation can also be observed in the leukocytes of peripheral blood.

METHODS Freshly resected tumor specimens were dissociated to single cells and analyzed by multiparametric flow cytometry. Peripheral blood leukocytes, macrophages, and a glioma cell line were treated with SF in vitro, and their cell uptake was assessed by multiparametric and imaging flow cytometry and by confocal microscopy.

RESULTS The ex vivo and in vitro analyses revealed that SF accumulates intracellularly in leukocytes as well as in tumor cells, but with a high variability of incorporation in the different cell subsets analyzed. Myeloid cells showed the highest level of fluorescence. In vitro uptake experiments showed that SF accumulation increases over time. The imaging analyses confirmed the internalization of the compound inside the cells.

CONCLUSIONS SF is not just a marker of BBB damage, but its intracellular detection suggests that it selectively accumulates intracellularly. Future efforts should target the mechanisms of its differential uptake by the different TME cell types in depth.

Intraoperative in vivo confocal laser endomicroscopy imaging at glioma margins: can we detect tumor infiltration?

J Neurosurg 140:357–366, 2024

Confocal laser endomicroscopy (CLE) is a US Food and Drug Administration–cleared intraoperative real-time fluorescence-based cellular resolution imaging technology that has been shown to image brain tumor histoarchitecture rapidly in vivo during neuro-oncological surgical procedures. An important goal for successful intraoperative implementation is in vivo use at the margins of infiltrating gliomas. However, CLE use at glioma margins has not been well studied.

METHODS Matching in vivo CLE images and tissue biopsies acquired at glioma margin regions of interest (ROIs) were collected from 2 institutions. All images were reviewed by 4 neuropathologists experienced in CLE. A scoring system based on the pathological features was implemented to score CLE and H&E images from each ROI on a scale from 0 to 5. Based on the H&E scores, all ROIs were divided into a low tumor probability (LTP) group (scores 0–2) and a high tumor probability (HTP) group (scores 3–5). The concordance between CLE and H&E scores regarding tumor probability was determined. The intraclass correlation coefficient (ICC) and diagnostic performance were calculated.

RESULTS Fifty-six glioma margin ROIs were included for analysis. Interrater reliability of the scoring system was excellent when used for H&E images (ICC [95% CI] 0.91 [0.86–0.94]) and moderate when used for CLE images (ICC [95% CI] 0.69 [0.40–0.83]). The ICCs (95% CIs) of the LTP group (0.68 [0.40–0.83]) and HTP group (0.68 [0.39–0.83]) did not differ significantly. The concordance between CLE and H&E scores was 61.6%. The sensitivity and specificity values of the scoring system were 79% and 37%. The positive predictive value (PPV) and negative predictive value were 65% and 53%, respectively. Concordance, sensitivity, and PPV were greater in the HTP group than in the LTP group. Specificity was higher in the newly diagnosed group than in the recurrent group.

CONCLUSIONS CLE may detect tumor infiltration at glioma margins. However, it is not currently dependable, especially in scenarios where low probability of tumor infiltration is expected. The proposed scoring system has excellent intrinsic interrater reliability, but its interrater reliability is only moderate when used with CLE images. These results suggest that this technology requires further exploration as a method for consistent actionable intraoperative guidance with high dependability across the range of tumor margin scenarios. Specific-binding and/or tumor-specific fluorophores, a CLE image atlas, and a consensus guideline for image interpretation may help with the translational utility of CLE.

Confocal laser endomicroscopy in glial tumors—a histomorphological analysis

Neurosurgical Review (2024) 47:65

The extent of resection and neurological outcome are important prognostic markers for overall survival in glioma patients. Confocal laser endomicroscopy is a tool to examine tissue without the need for fixation or staining. This study aims to analyze gliomas in confocal laser endomicroscopy and identify reliable diagnostic criteria for glial matter and glial tumors.

Material and methods One-hundred-and-five glioma specimens were analyzed using a 670-nm confocal laser endomicroscope and then processed into hematoxylin-eosin-stained frozen sections. All confocal images and frozen sections were evaluated for the following criteria: presence of tumor, cellularity, nuclear pleomorphism, changes of the extracellular glial matrix, microvascular proliferation, necrosis, and mitotic activity. Recurring characteristics were identified. Accuracy, sensitivity, specificity, and positive and negative predictive values were assessed for each feature.

Results All 125 specimens could be processed and successfully analyzed via confocal laser endomicroscopy. We found diagnostic criteria to identify white and grey matter and analyze cellularity, nuclear pleomorphism, changes in the glial matrix, vascularization, and necrosis in glial tumors. An accuracy of > 90.0 % was reached for grey matter, cellularity, and necrosis, > 80.0 % for white matter and nuclear pleomorphism, and > 70.0 % for microvascular proliferation and changes of the glial matrix. Mitotic activity could not be identified. Astroglial tumors showed significantly less nuclear pleomorphism in confocal laser endomicroscopy than oligodendroglial tumors (p < 0.001). Visualization of necrosis aids in the differentiation of low grade gliomas and high grade gliomas (p < 0.002).

Conclusion Autofluorescence-based confocal laser endomicroscopy proved not only useful in differentiation between tumor and brain tissue but also revealed useful clues to further characterize tissue without processing in a lab. Possible applications include the improvement of extent of resection and the safe harvest of representative tissue for histopathological and molecular genetic diagnostics.

Confocal laser endomicroscopy in glial tumors—a histomorphological analysis

Neurosurgical Review (2024) 47:65

The extent of resection and neurological outcome are important prognostic markers for overall survival in glioma patients. Confocal laser endomicroscopy is a tool to examine tissue without the need for fixation or staining. This study aims to analyze gliomas in confocal laser endomicroscopy and identify reliable diagnostic criteria for glial matter and glial tumors.

Material and methods One-hundred-and-five glioma specimens were analyzed using a 670-nm confocal laser endomicroscope and then processed into hematoxylin-eosin-stained frozen sections. All confocal images and frozen sections were evaluated for the following criteria: presence of tumor, cellularity, nuclear pleomorphism, changes of the extracellular glial matrix, microvascular proliferation, necrosis, and mitotic activity. Recurring characteristics were identified. Accuracy, sensitivity, specificity, and positive and negative predictive values were assessed for each feature.

Results All 125 specimens could be processed and successfully analyzed via confocal laser endomicroscopy. We found diagnostic criteria to identify white and grey matter and analyze cellularity, nuclear pleomorphism, changes in the glial matrix, vascularization, and necrosis in glial tumors. An accuracy of > 90.0 % was reached for grey matter, cellularity, and necrosis, > 80.0 % for white matter and nuclear pleomorphism, and > 70.0 % for microvascular proliferation and changes of the glial matrix. Mitotic activity could not be identified. Astroglial tumors showed significantly less nuclear pleomorphism in confocal laser endomicroscopy than oligodendroglial tumors (p < 0.001). Visualization of necrosis aids in the differentiation of low grade gliomas and high grade gliomas (p < 0.002).

Conclusion Autofluorescence-based confocal laser endomicroscopy proved not only useful in differentiation between tumor and brain tissue but also revealed useful clues to further characterize tissue without processing in a lab. Possible applications include the improvement of extent of resection and the safe harvest of representative tissue for histopathological and molecular genetic diagnostics.

Brain metastasis resection: the impact of fluorescence guidance (MetResect study)

Neurosurg Focus 55(2):E10, 2023

Maximal resection of brain metastases (BMs) improves both progression-free survival and overall survival (OS). Fluorescein sodium (FL) in combination with the YELLOW 560-nm filter is a safe and feasible method for visualizing residual tumor tissue during BM resection. The authors of this study aimed to show that use of FL would positively influence the volumetric extent of resection (EOR) and thus the survival outcome in patients undergoing BM resection.

METHODS Analyzing their institution’s prospective brain tumor registry, the authors identified 539 consecutive patients with BMs (247 women, mean age 62.8 years) by using preoperative high-quality MR images for volumetric analysis. BMs were resected under white light (WL) in 293 patients (54.4%; WL group) and under FL guidance in 246 patients (45.6%; FL group). Sex, age, presurgical Karnofsky Performance Status (KPS), recursive partitioning analysis class, and adjuvant treatment modalities were well balanced between the two groups. Volumetric analysis was performed in a blinded fashion by quantifying pre- and postoperative tumor volume based on gadolinium-enhanced T1-weighted sequences.

RESULTS In the FL group, the postoperative tumor volume was significantly smaller (p = 0.01), and hence the quantitative EOR was significantly larger (p = 0.024) and OS was significantly longer (p = 0.0001) (log-rank testing). Multivariate Cox regression modeling showed that age, presurgical KPS, metastasis status, and FL-guided resection are independent prognostic factors for survival.

CONCLUSIONS Compared with WL resection, FL-guided BM resection increased resection quality, significantly improved EOR, and prolonged OS.

Minimally invasive modification of the Goel-Harms atlantoaxial fusion technique

Neurosurg Focus 54(3):E14, 2023

The Goel-Harms atlantoaxial screw fixation technique for the treatment of atlantoaxial instability and unstable odontoid fractures is reliable and reproducible for a variety of anatomies. The drawbacks of the technique are the potential for significant bleeding from the C2 nerve root venous plexus and the risks associated with posterior midline exposure and retraction, such as pain and wound complications. The authors developed a minimally invasive surgical (MIS) modification of the Goel-Harms technique using intra-articular grafting to facilitate placement of percutaneous lateral mass and pars screws with extended tabs for minimally invasive subfascial rod placement. The objective of this study was to present the authors’ first series of 5 patients undergoing minimally invasive modification in comparison with 51 patients undergoing open atlantoaxial fusion.

METHODS A retrospective analysis of patient comorbid conditions, blood loss, length of surgery, and length of stay was performed on patients undergoing Goel-Harms instrumented fusion (GHIF) for unstable odontoid fractures performed between 2016 and 2021.

RESULTS Patients undergoing the minimally invasive procedure showed significantly less blood loss than those undergoing the open atlantoaxial fusion procedure, with a median blood loss of 30 ml compared with 150 ml using the open technique (p < 0.01). The patients showed no significant differences in length of stay (2 days for MIS vs 4 days for open atlantoaxial fusion, p = 0.25). There were no significant differences in length of surgery for MIS, but a possible trend toward increased operative duration (234 vs 151 minutes, p = 0.112).

CONCLUSIONS In this small pilot study, it was shown that MIS-GHIF can be performed with decreased blood loss in atlantoaxial instability and odontoid fractures. This technique may allow for greater and safer application of the procedure in the elderly and infirm.

 

Intraoperative confocal laser endomicroscopy: prospective in vivo feasibility study of a clinical-grade system for brain tumors

J Neurosurg 138:587–597, 2023

The authors evaluated the feasibility of using the first clinical-grade confocal laser endomicroscopy (CLE) system using fluorescein sodium for intraoperative in vivo imaging of brain tumors.

METHODS A CLE system cleared by the FDA was used in 30 prospectively enrolled patients with 31 brain tumors (13 gliomas, 5 meningiomas, 6 other primary tumors, 3 metastases, and 4 reactive brain tissue). A neuropathologist classified CLE images as interpretable or noninterpretable. Images were compared with corresponding frozen and permanent histology sections, with image correlation to biopsy location using neuronavigation. The specificities and sensitivities of CLE images and frozen sections were calculated using permanent histological sections as the standard for comparison. A recently developed surgical telepathology software platform was used in 11 cases to provide real-time intraoperative consultation with a neuropathologist.

RESULTS Overall, 10,713 CLE images from 335 regions of interest were acquired. The mean duration of the use of the CLE system was 7 minutes (range 3–18 minutes). Interpretable CLE images were obtained in all cases. The first interpretable image was acquired within a mean of 6 (SD 10) images and within the first 5 (SD 13) seconds of imaging; 4896 images (46%) were interpretable. Interpretable image acquisition was positively correlated with study progression, number of cases per surgeon, cumulative length of CLE time, and CLE time per case (p ≤ 0.01). The diagnostic accuracy, sensitivity, and specificity of CLE compared with frozen sections were 94%, 94%, and 100%, respectively, and the diagnostic accuracy, sensitivity, and specificity of CLE compared with permanent histological sections were 92%, 90%, and 94%, respectively. No difference was observed between lesion types for the time to first interpretable image (p = 0.35). Deeply located lesions were associated with a higher percentage of interpretable images than superficial lesions (p = 0.02). The study met the primary end points, confirming the safety and feasibility and acquisition of noninvasive digital biopsies in all cases. The study met the secondary end points for the duration of CLE use necessary to obtain interpretable images. A neuropathologist could interpret the CLE images in 29 (97%) of 30 cases.

CONCLUSIONS The clinical-grade CLE system allows in vivo, intraoperative, high-resolution cellular visualization of tissue microstructure and identification of lesional tissue patterns in real time, without the need for tissue preparation.

Exoscope improves visualization and extent of hippocampal resection in temporal lobectomy

Acta Neurochirurgica (2023) 165:259–263

Anterior temporal lobectomy (ATL) is a safe and well-validated procedure in the treatment of temporal lobe epilepsy (TLE), but is a challenging technique to master and still confers a risk of morbidity and mortality due to the complex anatomy of the mesial temporal lobe structures. Automated robotic 3D exoscopes have been developed to address limitations traditionally associated with microscopic visualization, allowing for ergonomic, high-definition 3D visualization with hands-free control of the robot. Given the potential advantages of using such a system for visualization of complex anatomy seen during mesial structure resection in ATL, this group sought to investigate impact on the percentage of hippocampal resection in both exoscope and microscope guided procedures.

Methods We conducted a retrospective analysis of 20 consecutive patients undergoing standard ATL for treatment of medically refractory TLE at our institution. Using pre-operative and post-operative imaging, the coronal plane cuts in which either the head, body, or tail of the hippocampus appeared were counted. The number of cuts in which the hippocampus appeared were multiplied by slice thickness to estimate hippocampal length.

Results Mean percentage of hippocampal resection was 61.1 (SD 13.1) and 76.5 (SD 6.5) for microscope and exoscope visualization, respectively (p = 0.0037).

Conclusion Use of exoscope for mesial resection during ATL has provided good visualization for those in the operating room and the potential for a safe increase in hippocampal resection in our series. Further investigation of its applications should be evaluated to see if it will improve outcomes.

Frameless neuronavigation‑assisted brain biopsy with electromagnetic tracking

Acta Neurochirurgica (2022) 164:3317–3322

In recent years, thanks to several technological innovations, stereotactic cerebral biopsies have evolved from frame-based to frameless neuronavigation-assisted techniques.

Methods The authors provide herein a detailed step-by-step description of the technique, shedding light on surgical tips and how to avoid complications. The practical application of the technique is demonstrated with a high-quality video.

Conclusion The neuronavigation-assisted brain biopsy with electromagnetic tracking is a “true frameless” procedure. It represents a simple, safe, and effective innovation for frameless biopsy of cerebral lesions. This technique is time efficient, offering a high degree of accuracy required for the establishment of a definitive diagnosis, enabling optimal further treatment, and thus improving patient outcome.

Technical Assessment of Microvascular Decompression for Trigeminal Neuralgia Using a 3-Dimensional Exoscope

Operative Neurosurgery 23:374–381, 2022

Detailed anatomic visualization of the root entry zone of the trigeminal nerve is crucial to successfully perform microvascular decompression surgery (MVD) in patients with trigeminal neuralgia.

OBJECTIVE: To determine advantages and disadvantages using a 3-dimensional (3D) exoscope for MVD surgery.

METHODS: A 4K 3D exoscope (ORBEYE) was used by a single surgical team for MVD in a retrospective case series of 8 patients with trigeminal neuralgia in a tertiary center. Clinical and surgical data were collected, and advantages/disadvantages of using the exoscope for MVD were recorded after each surgery. Descriptive statistics were used to summarize the data.

RESULTS: Adequate MVD of the trigeminal nerve root was possible in all patients by exclusively using the exoscope. It offered bright visualization of the cerebellopontine angle and the root entry zone of the trigeminal nerve that was comparable with a binocular operating microscope. The greatest advantages of the exoscope included good optical quality, the pronounced depth of field of the image for all observers, and its superior surgeon ergonomics. Disadvantages were revealed with overexposure at deep surgical sites and the lack of endoscope integration. In 6 patients, facial pain improved significantly after surgery (Barrow Neurological Institute pain intensity score I in 5 and III in 1 patient), whereas it did not in 2 patients (Barrow Neurological Institute score IV and V). No complications occurred.

CONCLUSION: Utilization of a 3D exoscope for MVD is a safe and feasible procedure. Surgeons benefit from better ergonomics, excellent image quality, and an improved experience for observers.

Double dose of 5-aminolevulinic acid and its effect on protoporphyrin IX accumulation in low-grade glioma

J Neurosurg 137:943–952, 2022

Administration of 5-aminolevulinic acid (5-ALA) does not regularly elicit fluorescence in low-grade glioma (LGG) at currently established doses and timing of administration. One explanation may be differences in blood-brain barrier (BBB) integrity compared to high-grade glioma. The authors hypothesized that for a BBB semipermeable to 5-ALA there might be a relationship between plasma 5-ALA concentration and its movement into the brain. A higher dose would elicit more 5-ALA conversion into protoporphyrin IX (PPIX). The authors present a case series of patients harboring LGG who received higher doses of 5-ALA.

METHODS Patients undergoing surgery for indeterminate glioma later diagnosed as LGG were included in this study. 5-ALA was administered at a standard dose of 20 mg/kg body weight (bw) 4 hours prior to induction of anesthesia. A subgroup of patients received a higher dose of 40 mg/kg bw. Fluorescence was evaluated visually and PPIX concentration (cPPIX) was determined ex vivo by hyperspectral measurements in freshly extracted tissue. All adverse events were recorded.

RESULTS A total of 23 patients harboring diffuse low-grade astrocytomas (n = 19) and oligodendrogliomas (n = 4) were analyzed. Thirteen patients received 20 mg/kg bw, and 10 patients received 40 mg/kg bw of 5-ALA. In the 20 mg/ kg group, 30.8% (4 of 13) of tumors harbored areas of visible fluorescence, compared to 60% of cases (n = 6 of 10) with 40 mg/kg bw. The threshold to visibility was 1 μg/ml in both groups. Measured over all biopsies, the mean cPPIX was significantly higher in the double-dose group (1.8 vs 0.45 μg/ml; p < 0.001). In non–visibly fluorescent tissue the mean cPPIX was 0.146 μg/ml in the 20 mg/kg and 0.347 μg/ml in the 40 mg/kg group, indicating an increase of 138% (p < 0.001).

CONCLUSIONS These observations demonstrate different regions with different levels of PPIX accumulation in LGG. With higher 5-ALA doses cPPIX increases, leading to more regions surpassing the visibility threshold of 1 μg/ml. These observations can be explained by the fact that the BBB in LGG is semipermeable to 5-ALA. Higher 5-ALA doses result in more PPIX conversion, an observation with implications for future dosing in LGG.

The Evolution of 5-Aminolevulinic Acid Fluorescence Visualization: Time for a Headlamp/Loupe Combination

The use of 5-aminolevulinic acid (5-ALA) for intraoperative protoporphyrin IX fluorescent imaging in the resection of malignant gliomas has been demonstrated to improve tumor visualization, increase the extent of resection, and extend progression-free survival. The current technique for visualization of 5-ALA consists of excitation and emission filters built into the operating microscope. However, there are notable limitations to this process, including low quantum yield, expense, and masking of surrounding anatomy.

METHODS: We present 3 cases in which 3 separate methods were employed for visualizing fluorescence. The devices reported are 1) a low-cost blue light flashlight, 2) a low-cost headlamp, and 3) the first reported case of the new Designs for Vision REVEAL Fluorescence-Guided Surgery (FGS) 5-ALA fluorescent headlight and loupes. The aim of the study is to provide confirmation that tumor fluorescence can be observed using commercially available products other than the microscope.

RESULTS: We demonstrate through 3 intraoperative cases that a variety of devices can produce visible fluorescence of the high-grade tumor and allow for simultaneous real-time visualization of the adjacent brain parenchyma and vasculature. The REVEAL FGS system appears to offer increased fluorescence emission compared with all other methods, including the microscope. –

CONCLUSIONS: Our study demonstrates the feasibility of using blue/ultraviolet light supplied by a commercially available, inexpensive flashlight or headlamp to visualize 5-ALA fluorescence in high-grade gliomas. We also provide the first documentation of the intraoperative use of the new Designs for Vision REVEAL FGS 5-ALA fluorescent headlight and loupes and report on the experience. Lack of an operative microscope capable of fluorescent illumination should not be a limiting factor in performing fluorescent guided glioma resection

Correlation of anatomical involvement patterns of insular gliomas with subnetworks of the limbic system

J Neurosurg 136:323–334, 2022

Gliomas frequently involve the insula both primarily and secondarily by invasion. Despite the high connectivity of the human insula, gliomas do not spread randomly to or from the insula but follow stereotypical anatomical involvement patterns. In the majority of cases, these patterns correspond to the intrinsic connectivity of the limbic system, except for tumors with aggressive biology. On the basis of these observations, the authors hypothesized that these different involvement patterns may be correlated with distinct outcomes and analyzed these correlations in an institutional cohort.

METHODS Fifty-nine patients who had undergone surgery for insular diffuse gliomas and had complete demographic, pre- and postoperative imaging, pathology, molecular genetics, and clinical follow-up data were included in the analysis (median age 37 years, range 21–71 years, M/F ratio 1.68). Patients with gliomatosis and those with only minor involvement of the insula were excluded. The presence of T2-hyperintense tumor infiltration was evaluated in 12 anatomical structures. Hierarchical biclustering was used to identify co-involved structures, and the findings were correlated with established functional anatomy knowledge. Overall survival was evaluated using Kaplan-Meier and Cox proportional hazards regression analysis (17 parameters).

RESULTS The tumors involved the anterior insula (98.3%), posterior insula (67.8%), temporal operculum (47.5%), amygdala (42.4%), frontal operculum (40.7%), temporal pole (39%), parolfactory area (35.6%), hypothalamus (23.7%), hippocampus (16.9%), thalamus (6.8%), striatum (5.1%), and cingulate gyrus (3.4%). A mean 4.2   2.6 structures were involved. On the basis of hierarchical biclustering, 7 involvement patterns were identified and correlated with cortical functional anatomy (pure insular [11.9%], olfactocentric [15.3%], olfactoopercular [33.9%], operculoinsular [15.3%], striatoinsular [3.4%], translimbic [11.9%], and multifocal [8.5%] patterns). Cox regression identified hippocampal involvement (p = 0.006) and postoperative tumor volume (p = 0.027) as significant negative independent prognosticators of overall survival and extent of resection (p = 0.015) as a significant positive independent prognosticator.

CONCLUSIONS The study findings indicate that insular gliomas primarily involve the olfactocentric limbic girdle and that involvement in the hippocampocentric limbic girdle is associated with a worse prognosis.

 

Fluorescence real-time kinetics of protoporphyrin IX after 5-ALA administration in low-grade glioma

J Neurosurg 136:9–15, 2022

5-Aminolevulinic acid (5-ALA) induces fluorescence in high-grade glioma (HGG), which is used for resection. However, the value of 5-ALA–induced fluorescence in low-grade glioma (LGG) is unclear. Time dependency and time kinetics have not yet been investigated. The purpose of this study was to investigate real-time kinetics of protoporphyrin IX (PpIX) in LGG based on hyperspectral fluorescence-based measurements and identify factors that predict fluorescence.

METHODS Patients with grade II gliomas and imaging from which HGGs could not be completely ruled out received 5-ALA at 20 mg/kg body weight 4 hours prior to surgery. Fluorescence intensity (FI) and PpIX concentration (CPpIX) were measured in tumor tissue utilizing a hyperspectral camera. Apparent diffusion coefficient (ADC)–based tumor cell density, Ki-67/MIB-1 index, chromosomal 1p/19q codeletion, and 18 F-fluoroethyl-l-tyrosine ( 18 F-FET) PET values and their role for predicting fluorescence were evaluated.

RESULTS Eighty-one biopsies from 25 patients were included. Tissues with fluorescence demonstrated FI and CPpIX maxima between 7 and 8 hours after administration. When visible fluorescence was observed, peaks of FI and CPpIX were observed within this 7- to 8-hour time frame, regardless of any MRI gadolinium contrast enhancement. Gadolinium enhancement (p = 0.008), Ki-67/MIB-1 index (p < 0.001), 18 F-FET PET uptake ratio (p = 0.004), and ADC-based tumor cellularity (p = 0.017) significantly differed between fluorescing and nonfluorescing tissue, but not 1p/19q codeletions. Logistic regression demonstrated that 18 F-FET PET uptake and Ki-67/MIB-1 index were independently related to fluorescence.

CONCLUSIONS This study reports a fluorescence-based assessment of CPpIX in human LGG tissues related to 18 F-FET PET uptake and Ki-67/MIB-1. As in HGGs, fluorescence in LGGs peaked between 7 and 8 hours after 5-ALA application, which has consequences for the timing of administration.

Detection of impending perfusion deficits by intraoperative computed tomography (iCT) in aneurysm surgery of the anterior circulation

Acta Neurochirurgica (2021) 163:3501–3514

The aim of our study was to evaluate the additional benefit of intraoperative computed tomography (iCT), intraoperative computed tomography angiography (iCTA), and intraoperative computed tomography perfusion (iCTP) in the intraoperative detection of impending ischemia to established methods (indocyanine green videoangiography (ICGVA), microDoppler, intraoperative neuromonitoring (IONM)) for initiating timely therapeutic measures.

Methods Patients with primary aneurysms of the anterior circulation between October 2016 and December 2019 were included. Data of iCT modalities compared to other techniques (ICGVA, microDoppler, IONM) was recorded with emphasis on resulting operative conclusions leading to inspection of clip position, repositioning, or immediate initiation of conservative treatment strategies. Additional variables analyzed included patient demographics, aneurysm-specific characteristics, and clinical outcome.

Results Of 194 consecutive patients, 93 patients with 100 aneurysms received iCT imaging. While IONM and ICGVA were normal, an altered vessel patency in iCTA was detected in 5 (5.4%) and a mismatch in iCTP in 7 patients (7.5%). Repositioning was considered appropriate in 2 patients (2.2%), where immediate improvement in iCTP could be documented. In a further 5 cases (5.4%), intensified conservative therapy was immediately initiated treating the reduced CBP as clip repositioning was not considered causal. In terms of clinical outcome at last FU, mRS0 was achieved in 85 (91.4%) and mRS1-2 in 7 (7.5%) and remained mRS4 in one patient with SAH (1.1%).

Conclusions Especially iCTP can reveal signs of impending ischemia in selected cases and enable the surgeon to promptly initiate therapeutic measures such as clip repositioning or intraoperative onset of maximum conservative treatment, while established tools might fail to detect those intraoperative pathologic changes.

Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection

Neurosurgery 89:727–736, 2021

Safely maximizing extent of resection has become the central goal in glioma surgery. Especially in eloquent cortex, the goal of maximal resection is balanced with neurological risk. As new technologies emerge in the field of neurosurgery, the standards for maximal safe resection have been elevated.

Fluorescence-guided surgery, intraoperative magnetic resonance imaging, and microscopic imaging methods are among the most well-validated tools available to enhance the level of accuracy and safety in glioma surgery. Each technology uses a different characteristic of glioma tissue to identify and differentiate tumor tissue from normal brain and is most effective in the context of anatomic, connectomic, and neurophysiologic context. While each tool is able to enhance resection, multiple modalities are often used in conjunction to achieve maximal safe resection.

This paper reviews the mechanism and utility of the major adjuncts available for use in glioma surgery, especially in tumors within eloquent areas, and puts forth the foundation for a unified approach to how leverage currently available technology to ensure maximal safe resection.

Intraoperative surveillance of the vertebral artery using indocyanine green angiography and Doppler sonography in craniovertebral junction surgeries

Neurosurg Focus 50 (1):E5, 2021

The authors sought to evaluate the usefulness of indocyanine green (ICG) angiography and Doppler sonography for monitoring the vertebral artery (VA) during craniovertebral junction (CVJ) surgery and compare the incidence of VA injury (VAI) between the groups with and without the monitoring of VA using ICG angiography and Doppler sonography.

METHODS In total, 344 consecutive patients enrolled who underwent CVJ surgery. Surgery was performed without intraoperative VA monitoring tools in 262 cases (control group) and with VA monitoring tools in 82 cases (monitoring group). The authors compared the incidence of VAI between groups. The procedure times of ICG angiography, change of VA flow velocity measured by Doppler sonography, and complication were investigated.

RESULTS There were 4 VAI cases in the control group, and the incidence of VAI was 1.5%. Meanwhile, there were no VAI cases in the monitoring group. The procedure time of ICG angiography was less than 5 minutes (mean [± SD] 4.6 ± 2.1 minutes) and VA flow velocity was 11.2 ± 4.5 cm/sec. There were several cases in which the surgical method had to be changed depending on the VA monitoring. The combined use of ICG angiography and Doppler sonography was useful not only to monitor VA patency but also to assess the quality of blood flow during CVJ surgery, especially in the high-risk group of patients.

CONCLUSIONS The combined use of ICG angiography and Doppler sonography enables real-time intraoperative monitoring of the VA by detecting blood flow and flow velocity. As the arteries get closer, they provide auditory and visual feedback to the surgeon. This real-time image guidance could be a useful tool, especially for high-risk patients and inexperienced surgeons, to avoid iatrogenic VAI during any CVJ surgery.

Intraoperative MRI–based elastic fusion for anatomically accurate tractography of the corticospinal tract

Neurosurg Focus 50 (1):E9, 2021

Tractography is a useful technique that is standardly applied to visualize subcortical pathways. However, brain shift hampers tractography use during the course of surgery. While intraoperative MRI (ioMRI) has been shown to be beneficial for use in oncology, intraoperative tractography can rarely be performed due to scanner, protocol, or head clamp limitations. Elastic fusion (EF), however, enables adjustment for brain shift of preoperative imaging and even tractography based on intraoperative images. The authors tested the hypothesis that adjustment of tractography by ioMRI-based EF (IBEF) correlates with the results of intraoperative neuromonitoring (IONM) and clinical outcome and is therefore a reliable method.

METHODS In 304 consecutive patients treated between June 2018 and March 2020, 8 patients, who made up the basic study cohort, showed an intraoperative loss of motor evoked potentials (MEPs) during motor-eloquent glioma resection for a subcortical lesion within the corticospinal tract (CST) as shown by ioMRI. The authors preoperatively visualized the CST using tractography. Also, IBEFs of pre- and intraoperative images were obtained and the location of the CST was compared in relation to a subcortical lesion. In 11 patients (8 patients with intraoperative loss of MEPs, one of whom also showed loss of MEPs on IBEF evaluation, plus 3 additional patients with loss of MEPs on IBEF evaluation), the authors examined the location of the CST by direct subcortical stimulation (DSCS). The authors defined the IONM results and the functional outcome data as ground truth for analysis.

RESULTS The maximum mean ± SD correction was 8.8 ± 2.9 (range 3.8–12.0) mm for the whole brain and 5.3 ± 2.4 (range 1.2–8.7) mm for the CST. The CST was located within the lesion before IBEF in 3 cases and after IBEF in all cases (p = 0.0256). All patients with intraoperative loss of MEPs suffered from surgery-related permanent motor deficits. By approximation, the location of the CST after IBEF could be verified by DSCS in 4 cases.

CONCLUSIONS The present study shows that tractography after IBEF accurately correlates with IONM and patient outcomes and thus demonstrates reliability in this initial study.

Impact of Intraoperative Magnetic Resonance Imaging and Other Factors on Surgical Outcomes for Newly Diagnosed Grade II Astrocytomas and Oligodendrogliomas: A Multicenter Study

Neurosurgery 88 (1) 2021: 63–73,

Few studies use large, multi-institutional patient cohorts to examine the role of intraoperative magnetic resonance imaging (iMRI) in the resection of grade II gliomas.

OBJECTIVE: To assess the impact of iMRI and other factors on overall survival (OS) and progression-free survival (PFS) for newly diagnosed grade II astrocytomas and oligodendrogliomas.

METHODS: Retrospective analyses of a multicenter database assessed the impact of patient-, treatment-, and tumor-related factors on OS and PFS.

RESULTS: A total of 232 resections (112 astrocytomas and 120 oligodendrogliomas) were analyzed. Oligodendrogliomas had longer OS (P < .001) and PFS (P = .01) than astrocytomas. Multivariate analyses demonstrated improved OS for gross total resection (GTR) vs subtotal resection (STR; P = .006, hazard ratio [HR]: .23) and near total resection (NTR; P = .02, HR: .64). GTR vs STR (P = .02, HR: .54), GTR vs NTR (P = .04, HR: .49), and iMRI use (P = .02, HR: .54) were associated with longer PFS. Frontal (P = .048, HR: 2.11) and occipital/parietal (P = .003, HR: 3.59) locations were associated with shorter PFS (vs temporal). Kaplan-Meier analyses showed longer OS with increasing extent of surgical resection (EOR) (P=.03) and 1p/19q gene deletions (P=.02). PFS improved with increasing EOR (P = .01), GTR vs NTR (P = .02), and resections above STR (P = .04). Factors influencing adjuvant treatment (35.3% of patients) included age (P=.002, odds ratio [OR]: 1.04) and EOR (P=.003,OR: .39) but not glioma subtype or location. Additional tumor resection after iMRI was performed in 105/159 (66%) iMRI cases, yielding GTR in 54.5% of these instances.

CONCLUSION: EOR is a major determinant of OS and PFS for patients with grade II astrocytomas and oligodendrogliomas. Intraoperative MRI may improve EOR and was associated with increased PFS.