Comparison Between the Supracerebellar Infratentorial and Precuneal Interhemispheric, Transtentorial Approaches to the Cerebellomesencephalic Fissure

Operative Neurosurgery 25:E6–E14, 2023

The dorsal brainstem and cerebellomesencephalic fissure are challenging surgical targets. To afford a preferentially craniocaudal trajectory to this region, the precuneal interhemispheric transtentorial approach (PCIT) has been proposed.

OBJECTIVE: To didactically describe and compare exposures and anatomic indications of the supracerebellar infratentorial approach (SCIT) and PCIT to the cerebellomesencephalic fissure.

METHODS: Nine formalin-fixed, latex-injected cadaveric head specimens were used to perform a midline SCIT and bilateral PCITs and measure the distance of each approach. Twenty-four formalin-fixed specimens were used to measure the distance from the most posterior cortical bridging vein entering the superior sagittal sinus to the calcarine sulcus and the torcula. Fifty-one magnetic resonance images were reviewed to calculate the angle of each approach. Three illustrative surgical cases were described.

RESULTS: Mean distances from the brain or cerebellar surface to the operative target of the PCIT and SCIT were 7.1 cm (range: 5-7.7 cm) and 5.5 cm (range: 3.8-6.2 cm), respectively. The SCIT provided direct access to structures of the quadrigeminal cistern bilaterally. The PCIT provided access from the ipsilateral inferior colliculus to the ipsilateral infratrochlear zone. The PCIT’s benefit was the direct access it provided to the cerebellomesencephalic fissure because of its superior to inferior trajectory.

CONCLUSION: The PCIT is indicated for unilateral lesions of the cerebellomesencephalic fissure and dorsal brainstem that harbor a craniocaudal long axis and do not have a superior extension beyond the superior colliculi. The SCIT is beneficial for lesions that extend bilaterally, have an anteroposterior long axis, or involve the Galenic complex.

 

Anatomical study of the thoracolumbar radiculomedullary arteries, including the Adamkiewicz artery and supporting radiculomedullary arteries

J Neurosurg Spine 38:233–241, 2023

OBJECTIVE The aim of this paper was to identify and characterize all the segmental radiculomedullary arteries (RMAs) that supply the thoracic and lumbar spinal cord.

METHODS All RMAs from T4 to L5 were studied systematically in 25 cadaveric specimens. The RMA with the greatest diameter in each specimen was termed the artery of Adamkiewicz (AKA). Other supporting RMAs were also identified and characterized.

RESULTS A total of 27 AKAs were found in 25 specimens. Twenty-two AKAs (81%) originated from a left thoracic or a left lumbar radicular branch, and 5 (19%) arose from the right. Two specimens (8%) had two AKAs each: one specimen with two AKAs on the left side and the other specimen with one AKA on each side. Eight cadaveric specimens (32%) had 10 additional RMAs; among those, a single additional RMA was found in 6 specimens (75%), and 2 additional RMAs were found in each of the remaining 2 specimens (25%). Of those specimens with a single additional RMA, the supporting RMA was ipsilateral to the AKA in 5 specimens (83%) and contralateral in only 1 specimen (17%). The specimens containing 2 additional RMAs were all (100%) ipsilateral to their respective AKAs.

CONCLUSIONS The segmental RMAs supplying the thoracic and lumbar spinal cord can be unilateral, bilateral, or multiple. Multiple AKAs or additional RMAs supplying a single anterior spinal artery are common and should be considered when dealing with the spinal cord at the thoracolumbar level.

Overview of the microanatomy of the human brainstem in relation to the safe entry zones

J Neurosurg 137:1524–1534, 2022

The primary objective of this anatomical study was to apply innovative imaging techniques to increase understanding of the microanatomical structures of the brainstem related to safe entry zones. The authors hypothesized that such a high-detail overview would enhance neurosurgeons’ abilities to approach and define anatomical safe entry zones for use with microsurgical resection techniques for intrinsic brainstem lesions.

METHODS The brainstems of 13 cadavers were studied with polarized light imaging (PLI) and 11.7-T MRI. The brainstem was divided into 3 compartments—mesencephalon, pons, and medulla—for evaluation with MRI. Tissue was further sectioned to 100 μm with a microtome. MATLAB was used for further data processing. Segmentation of the internal structures of the brainstem was performed with the BigBrain database.

RESULTS Thirteen entry zones were reported and assessed for their safety, including the anterior mesencephalic zone, lateral mesencephalic sulcus, interpeduncular zone, intercollicular region, supratrigeminal zone, peritrigeminal zone, lateral pontine zone, median sulcus, infracollicular zone, supracollicular zone, olivary zone, lateral medullary zone, and anterolateral sulcus. The microanatomy, safety, and approaches are discussed.

CONCLUSIONS PLI and 11.7-T MRI data show that a neurosurgeon possibly does not need to consider the microanatomical structures that would not be visible on conventional MRI and tractography when entering the mentioned safe entry zones. However, the detailed anatomical images may help neurosurgeons increase their understanding of the internal architecture of the human brainstem, which in turn could lead to safer neurosurgical intervention.

Microvascular anatomy of the medial temporal region

J Neurosurg 137:747–759, 2022

The authors investigated the microvascular anatomy of the hippocampus and its implications for medial temporal tumor surgery. They aimed to reveal the anatomical variability of the arterial supply and venous drainage of the hippocampus, emphasizing its clinical implications for the removal of associated tumors.

METHODS Forty-seven silicon-injected cerebral hemispheres were examined using microscopy. The origin, course, irrigation territory, spatial relationships, and anastomosis of the hippocampal arteries and veins were investigated. Illustrative cases of hippocampectomy for medial temporal tumor surgery are also provided.

RESULTS The hippocampal arteries can be divided into 3 segments, the anterior (AHA), middle (MHA), and posterior (PHA) hippocampal artery complexes, which correspond to irrigation of the hippocampal head, body, and tail, respectively. The uncal hippocampal and anterior hippocampal-parahippocampal arteries contribute to the AHA complex, the posterior hippocampal-parahippocampal arteries serve as the MHA complex, and the PHA and splenial artery compose the PHA complex. Rich anastomoses between hippocampal arteries were observed, and in 11 (23%) hemispheres, anastomoses between each segment formed a complete vascular arcade at the hippocampal sulcus. Three veins were involved in hippocampal drainage—the anterior hippocampal, anterior longitudinal hippocampal, and posterior longitudinal hippocampal veins—which drain the hippocampal head, body, and tail, respectively, into the basal and internal cerebral veins.

CONCLUSIONS An understanding of the vascular variability and network of the hippocampus is essential for medial temporal tumor surgery via anterior temporal lobectomy with amygdalohippocampectomy and transsylvian selective amygdalohippocampectomy. Stereotactic procedures in this region should also consider the anatomy of the vascular arcade at the hippocampal sulcus.

Microsurgical approaches to the cerebellar interpeduncular region

J Neurosurg 136:1410–1423, 2022

The cerebellar interpeduncular region (CIPR) is a gate for dorsolateral pontine and cerebellar lesions accessed through the supracerebellar infratentorial approach (SCITa), the occipital transtentorial approach (OTa), or the subtemporal transtentorial approach (STa). The authors sought to compare the exposures of the CIPR region that each of these approaches provided.

METHODS Three approaches were performed bilaterally in eight silicone-injected cadaveric heads. The working area, area of exposure, depth of the surgical corridor, length of the interpeduncular sulcus (IPS) exposed, and bridging veins were statistically studied and compared based on each approach.

RESULTS The OTa provided the largest working area (1421 mm2; p < 0.0001) and the longest surgical corridor (6.75 cm; p = 0.0006). Compared with the SCITa, the STa provided a larger exposure area (249.3 mm2; p = 0.0148) and exposed more of the length of the IPS (1.15 cm; p = 0.0484). The most bridging veins were encountered with the SCITa; however, no significant differences were found between this approach and the other approaches (p > 0.05).

CONCLUSIONS To reach the CIPR, the STa provided a more extensive exposure area and more linear exposure than did the SCITa. The OTa offered a larger working area than the SCIT and the STa; however, the OTa had the most extensive surgical corridor. These data may help neurosurgeons select the most appropriate approach for lesions of the CIPR.

Anatomical multifocal high-grade glioma resection

Acta Neurochirurgica (2021) 163:953–957

If an awake surgery is somehow not available for gliomas at the language area, understanding the anatomy and well designed surgical strategy are important.

Method We present a case with left hemispheric multifocal high-grade gliomas located deeply at the left temporal pole, the Wernicke’s area, and mesial temporal region. Because the patient could not endure the awake surgery and obtain practicable functional magnetic resonance imaging (MRI) for eloquent cortex evaluation, we removed the lesions following the anatomical resection strategy guided by diffusion tensor imaging (DTI).

Conclusion This case demonstrates the value of DTI and the importance of anatomical resection strategies in glioma surgeries.

Comparative anatomical analysis between the minipterional and supraorbital approaches

J Neurosurg 134:1276–1284, 2021

Keyhole approaches, namely the minipterional approach (MPTa) and the supraorbital approach (SOa), are alternatives to the standard pterional approach to treat lesions located in the anterior and middle cranial fossae. Despite their increasing popularity and acceptance, the indications and limitations of these approaches require further assessment. The purpose of the present study was to determine the differences in the area of surgical exposure and surgical maneuverability provided by the MPTa and SOa.

METHODS The areas of surgical exposure afforded by the MPTa and SOa were analyzed in 12 sides of cadaver heads by using a microscope and a neuronavigation system. The area of exposure of the region of interest and surgical freedom (maneuverability) of each approach were calculated.

RESULTS The area of exposure was significantly larger in the MPTa than in the SOa (1250 ± 223 mm2 vs 939 ± 139 mm2, p = 0.002). The MPTa provided larger areas of exposure in the ipsilateral and midline compartments, whereas there was no significant difference in the area of exposure in the contralateral compartment. All targets in the anterior circulation had significantly larger areas of surgical freedom when treated via the MPTa versus the SOa.

CONCLUSIONS The MPTa provides greater surgical exposure and better maneuverability than that offered by the SOa. The SOa may be advantageous as a direct corridor for treating lesions located in the contralateral side or in the anterior cranial fossa, but the surgical exposure provided in the midline region is inferior to that exposed by the MPTa.

How I do it: retrosigmoid intradural inframeatal petrosectomy

Acta Neurochirurgica (2021) 163:649–653

Lesions infiltrating the petrous temporal bone are some of the most complex to treat surgically. Many approaches have been developed in order to address these lesions, including endoscopic endonasal, anterior petrosectomy, posterior petrosectomy, and retrosigmoid.

Method We describe in a stepwise fashion the surgical steps of the retrosigmoid intradural inframeatal petrosectomy.

Conclusion The retrosigmoid intradural inframeatal petrosectomy may afford satisfactory exposure with limited drilling and minimal disruption of perilesional anatomical structures. It can provide excellent surgical results, especially for soft tumors, while minimizing surgical morbidity.

The endoscopic supraorbital translaminar approach

Acta Neurochirurgica (2021) 163:635–641

Resection of lesions located within the third ventricle presents a surgical challenge. Several approaches have been developed in an attempt to obtain maximal resection, while minimizing brain retraction. In this work, we assess the surgical exposure and maneuverability of the endoscopic supraorbital translaminar approach (ESTA), a potential alternative to fenestrate the lamina terminalis and approach the third ventricle by using the endoscope through a keyhole supraorbital-eyebrow craniotomy.

Methods Five cadaveric heads were used to assess the corridor depth, area of exposure, and viewing angles offered by the ESTA. One additional utilized specimen provided a stepwise dissection of the approach.

Results The ESTA was successfully performed in all specimens. Depth of the surgical corridor from the craniotomy to the ipsilateral internal carotid artery (ICA), lamina terminalis, and contralateral carotid were 70.7 ± 2.9 mm, 73.2 ± 2.9 mm, and 78.9 ± 4.1 mm, respectively. Viewing angle referenced to the ipsilateral ICA was 6.5 ± 4.2°, while the viewing angle for the lamina terminalis was 25.8 ± 4.3°. The surgical exposure provided by the ESTA was 1655 ± 255 mm2.

Conclusions The ESTA provides a wide surgical view of the lamina terminalis and may be potentially used to approach lesions located in the anterior third of the third ventricle. As a pure endoscopic approach, the ESTA requires minimal brain retraction, while affords good visualization of targeted lesions around the lamina terminalis. The ESTA uses an anterolateral approach and so provides a short and straightforward approach to these structures.

The frontal longitudinal system as revealed through the fiber microdissection technique

J Neurosurg 133:1503–1515, 2020

The purpose of this study was to investigate the morphology, connectivity, and correlative anatomy of the longitudinal group of fibers residing in the frontal area, which resemble the anterior extension of the superior longitudinal fasciculus (SLF) and were previously described as the frontal longitudinal system (FLS).

METHODS Fifteen normal adult formalin-fixed cerebral hemispheres collected from cadavers were studied using the Klingler microdissection technique. Lateral to medial dissections were performed in a stepwise fashion starting from the frontal area and extending to the temporoparietal regions.

RESULTS The FLS was consistently identified as a fiber pathway residing just under the superficial U-fibers of the middle frontal gyrus or middle frontal sulcus (when present) and extending as far as the frontal pole. The authors were able to record two different configurations: one consisting of two distinct, parallel, longitudinal fiber chains (13% of cases), and the other consisting of a single stem of fibers (87% of cases). The fiber chains’ cortical terminations in the frontal and prefrontal area were also traced. More specifically, the FLS was always recorded to terminate in Brodmann areas 6, 46, 45, and 10 (premotor cortex, dorsolateral prefrontal cortex, pars triangularis, and frontal pole, respectively), whereas terminations in Brodmann areas 4 (primary motor cortex), 47 (pars orbitalis), and 9 were also encountered in some specimens. In relation to the SLF system, the FLS represented its anterior continuation in the majority of the hemispheres, whereas in a few cases it was recorded as a completely distinct tract. Interestingly, the FLS comprised shorter fibers that were recorded to interconnect exclusively frontal areas, thus exhibiting different fiber architecture when compared to the long fibers forming the SLF.

CONCLUSIONS The current study provides consistent, focused, and robust evidence on the morphology, architecture, and correlative anatomy of the FLS. This fiber system participates in the axonal connectivity of the prefrontal-premotor cortices and allegedly subserves cognitive-motor functions. Based in the SLF hypersegmentation concept that has been advocated by previous authors, the FLS should be approached as a distinct frontal segment within the superior longitudinal system.

The endoscopic transpterional port approach: anatomy, technique, and initial clinical experience

J Neurosurg 132:884–894, 2020

The evolution of microsurgical and endoscopic techniques has allowed the development of less invasive transcranial approaches. The authors describe a purely endoscopic transpterional port craniotomy to access lesions involving the cavernous sinus and the anterolateral skull base.

METHODS Through single- or dual-port incisions and with direct endoscopic visualization, the authors performed an endoscopic transpterional port approach (ETPA) using a 4-mm straight endoscope in 8 sides of 4 formalin-fixed cadaveric heads injected with colored latex. A main working port incision is made just below the superior temporal line and behind the hairline. An optional 0.5- to 1-cm second skin port incision is made on the lateral supraorbital region, allowing multiangle endoscopic visualization and maneuverability. A 1.5- to 2-cm craniotomy centered over the pterion is done through the main port, which allows an extradural exposure of the cavernous sinus region and extra/intradural exposure of the frontal and temporal cranial fossae. The authors present a pilot surgical series of 17 ETPA procedures and analyze the surgical indications and clinical outcomes retrospectively.

RESULTS The initial stage of this work on cadavers provided familiarity with the technique, standardized its steps, and showed its anatomical limits. The clinical ETPA was applied to gain access into the cavernous sinus, as well as for aneurysm clipping and meningioma resection. Overall, perioperative complications occurred in 1 patient (6%), there was no mortality, and at last follow-up all patients had a modified Rankin Scale score of 0 or 1.

CONCLUSIONS The ETPA provides a less invasive, focused, and direct route to the cavernous sinus, and to the frontal and temporal cranial fossae, and it is feasible in clinical practice for selected indications with good results.

Kambin’s triangle: definition and new classification schema

J Neurosurg Spine 32:390–398, 2020

Kambin’s triangle is an anatomical corridor used to access critical structures in a variety of spinal procedures. It is considered a safe space because it is devoid of vascular and neural structures of importance. Nonetheless, there is currently significant variation in the literature regarding the exact dimensions and anatomical borders of Kambin’s triangle. This confusion was originally caused by leaving the superior articular process (SAP) unassigned in the description of the working triangle, despite Kambin identifying that structure in his original report. The SAP is the most relevant structure to consider when accessing the transforaminal corridor. Leaving the SAP unassigned has led to an open-handed application of the term “Kambin’s triangle.” That single eponym currently has two potential meanings, one meaning for endoscopic surgeons working through a corridor in the intact spine and a second meaning for surgeons accessing the disc space after a complete or partial facetectomy. Nevertheless, an anatomical corridor should have one consistent definition to clearly communicate techniques and use of instrumentation performed through that space. As such, the authors propose a new surgically relevant classification of this corridor. Assigning the SAP a border requires adding another dimension to the triangle, thereby transforming it into a prism. The term “Kambin’s prism” indicates the assignment of a border to all relevant anatomical structures, allowing for a uniform definition of the 3D space. From there, the classification scheme considers the expansion of the corridor and the extent of bone removal, with a particular focus on the SAP.

The temporoinsular projection system: an anatomical study

J Neurosurg 132:615–623, 2020

Connections between the insular cortex and the amygdaloid complex have been demonstrated using various techniques. Although functionally well connected, the precise anatomical substrate through which the amygdaloid complex and the insula are wired remains unknown. In 1960, Klingler briefly described the “fasciculus amygdaloinsularis,” a white matter tract connecting the posterior insula with the amygdala. The existence of such a fasciculus seems likely but has not been firmly established, and the reported literature does not include a thorough description and documentation of its anatomy. In this fiber dissection study the authors sought to elucidate the pathway connecting the insular cortex and the mesial temporal lobe.

METHODS Fourteen brain specimens obtained at routine autopsy were dissected according to Klingler’s fiber dissection technique. After fixation and freezing, anatomical dissections were performed in a stepwise progressive fashion.

RESULTS The insula is connected with the opercula of the frontal, parietal, and temporal lobes through the extreme capsule, which represents a network of short association fibers. At the limen insulae, white matter fibers from the extreme capsule converge and loop around the uncinate fasciculus toward the temporal pole and the mesial temporal lobe, including the amygdaloid complex.

CONCLUSIONS The insula and the mesial temporal lobe are directly connected through white matter fibers in the extreme capsule, resulting in the appearance of a single amygdaloinsular fasciculus. This apparent fasciculus is part of the broader network of short association fibers of the extreme capsule, which connects the entire insular cortex with the temporal pole and the amygdaloid complex. The authors propose the term “temporoinsular projection system” (TIPS) for this complex.

Individual variations of the superior petrosal vein complex and their microsurgical relevance in 50 cases of trigeminal microvascular decompression

Acta Neurochirurgica (2020) 162:197–209

We investigated the understudied anatomical variations of the superior petrosal vein (SPV) complex (SPVC), which may play some role in dictating the individual complication risk following SPVC injury.

Methods Microvascular decompressions of the trigeminal nerve between September 2012 and July 2016. All operations utilized an SPVC preserving technique. Preoperative balanced fast field echo (bFFE) magnetic resonance imaging, or equivalent sequences, and operative videos were studied for individual SPVC anatomical features.

Results Applied imaging and operative SPVC anatomy were described for fifty patients (mean age, 67.18 years; female sex and right-sided operations, 58% each). An SPVC component was sacrificed intentionally in 6 and unintentionally in only 7 cases. Twenty-nine different individual variations were observed; 80% of SPVCs had either 2 SPVs with 3 or 1 SPV with 2, 3, or 4 direct tributaries. Most SPVCs had 1 SPV (64%) and 2 SPVs (32%). The SPV drainage point into the superior petrosal sinus was predominantly between the internal auditory meatus and Meckel cave (85.7% of cases). The vein of the cerebellopontine fissure was the most frequent direct tributary (86%), followed by the pontotrigeminal vein in 80% of SPVCs. Petrosal-galenic anastomosis was detected in at least 38%of cases. At least 1 SPVin 54%of the cases and at least 1 direct tributary in 90%disturbed the operative field. The tributaries were more commonly sacrificed.

Conclusions The extensive anatomical variation of SPVC is depicted. Most SPVCs fall into 4 common general configurations and can usually be preserved. BFFE or equivalent sequences remarkably facilitated the intraoperative understanding of the individual SPVC in most cases.

The foramen lacerum: surgical anatomy and relevance for endoscopic endonasal approaches

J Neurosurg 131:1571–1582, 2019

The foramen lacerum is a relevant skull base structure that has been neglected for many years. From the endoscopic endonasal perspective, the foramen lacerum is a key structure due to its location at the crossroad between the sagittal and coronal planes. The objective of this study was to provide a detailed investigation of the surgical anatomy of the foramen lacerum and its adjacent structures based on anatomical dissections and imaging studies, propose several relevant key surgical landmarks, and demonstrate the surgical technique for its full exposure with several illustrative cases.

METHODS Ten colored silicone-injected anatomical specimens were dissected using a transpterygoid approach to the foramen lacerum region in a stepwise manner. Five similar specimens were used for a comparative transcranial approach. The osseous anatomy was examined in 32 high-resolution multislice CT studies and 1 disarticulated skull. Representative cases were selected to illustrate the application of the findings.

RESULTS The pterygosphenoidal fissure is the synchondrosis between the lacerum process of the pterygoid bone and the floor of the sphenoid bone. It constantly converges with the posterior end of the vidian canal at a 45° angle, and its posterolateral end points directly to the lacerum foramen. The pterygoid tubercle separates the vidian canal from the pterygosphenoidal fissure, and forms the anterior wall of the lower part of the foramen lacerum. The lingual process, which forms the lateral wall of the foramen lacerum, was identified in 53 of 64 sides and featured an average height of 5 mm. The mandibular strut separates the foramen lacerum from the foramen ovale and had an average width of 5 mm.

CONCLUSIONS This study provides relevant surgical landmarks and a systematic approach to the foramen lacerum by defining anterior, medial, lateral, and inferior walls that may facilitate its safe exposure for effective removal of lesions while minimizing the risk of injury to the internal carotid artery.

The anatomy of the parapharyngeal segment of the internal carotid artery for endoscopic endonasal approach

Neurosurgical Review
https://doi.org/10.1007/s10143-019-01176-3

Injury to the internal carotid artery (ICA) is a life-threatening complication of endoscopic endonasal approaches. The objective of this study is to illustrate the detail anatomy of the parapharyngeal segment of the ICA (PPICA) to safe endoscopic endonasal surgery.

The anatomical dissection was performed in 10 cadaveric specimens and several crucial anatomical landmarks were identified and measured. In addition, 50 dry skulls were studied to further assess the relationship between the pharyngeal tubercle and carotid foramen. From the endoscopic endonasal perspective, in the median plane, the pharyngeal tubercle and the carotid foramen on both sides were located on a line.

The average distance between the pharyngeal tubercle and anterior border of the external orifice of the carotid canal was measured as 25.2 ± 3.2 mm. In the paramedian plane, the PPICA was located between the levator veli palatini muscle (LVPM) and the stylopharyngeal muscle (SPM) in upper parapharyngeal space in all specimens, and the distance from the posterior border of the LVPM to the anterior border of the SPM was recorded as 15.1 ± 2.8 mm at the level of the carotid foramen. The distance from the attachment of the LVPM to the anterior border of the external orifice of the carotid canal was about 5.1 ± 0.2 mm. The fully developed stylopharyngeal fascia (SPhF) was observed in 10 cases, and the PPICA was always anteriorly enclosed by and adhered to the SPhF.

The medial wall of the cavernous sinus. Part 1: Surgical anatomy, ligaments, and surgical technique for its mobilization and/or resection

J Neurosurg 131:122–130, 2019

The medial wall of the cavernous sinus (CS) is often invaded by pituitary adenomas. Surgical mobilization and/or removal of the medial wall remains a challenge.

METHODS Endoscopic endonasal dissection was performed in 20 human cadaver heads. The configuration of the medial wall, its relationship to the internal carotid artery (ICA), and the ligamentous connections in between them were investigated in 40 CSs.

RESULTS The medial wall of the CS was confirmed to be an intact single layer of dura that is distinct from the capsule of the pituitary gland and the periosteal layer that forms the anterior wall of the CS. In 32.5% of hemispheres, the medial wall was indented by and/or well adhered to the cavernous ICA. The authors identified multiple ligamentous fibers that anchored the medial wall to other walls of the CS and/or to specific ICA segments. These parasellar ligaments were clas- sified into 4 groups: 1) caroticoclinoid ligament, spanning from the medial wall and the middle clinoid toward the clinoid ICA segment and anterior clinoid process; 2) superior parasellar ligament, connecting the medial wall to the horizontal cavernous ICA and/or lateral wall of the CS; 3) inferior parasellar ligament, bridging the medial wall to the anterior wall of the CS or anterior surface of the short vertical segment of the cavernous ICA; and 4) posterior parasellar ligament, which anchors the medial wall to the short vertical segment of the cavernous ICA and/or the posterior carotid sulcus. The caroticoclinoid ligament and inferior parasellar ligament were present in most CSs (97.7% and 95%, respectively), while the superior and posterior parasellar ligaments were identified in approximately half of the CSs (57.5% and 45%, respec- tively). The caroticoclinoid ligament was the strongest and largest ligament, and it was typically assembled as a group of ligaments with a fan-like arrangement. The inferior parasellar ligament was the first to be encountered after opening the anterior wall of the CS during an interdural transcavernous approach.

CONCLUSIONS The authors introduce a classification of the parasellar ligaments and their role in anchoring the medial wall of the CS. These ligaments should be identified and transected to safely mobilize the medial wall away from the cavernous ICA during a transcavernous approach and for safe and complete resection of adenomas that selectively invade the medial wall.

Morphological Variables Associated With Ruptured Middle Cerebral Artery Aneurysms

Neurosurgery, Volume 85, Issue 1, July 2019, Pages 75–83

Geometric factors of intracranial aneurysms and surrounding vasculature could affect the risk of aneurysm rupture. However, large-scale assessments of morphological parameters correlated with intracranial aneurysm rupture in a location-specific manner are scarce.

OBJECTIVE: To investigate the morphological characteristics associated with ruptured middle cerebral artery (MCA) aneurysms.

METHODS: Five hundred sixty-one patients with 638 MCA aneurysms diagnosed between 1990 and 2016 who had available computed tomography angiography (CTA) were included in this study. CTAs were evaluated using the Vitrea Advanced Visualization software for 3-dimensional (3D) reconstruction. Morphological parameters examined in each model included aneurysm projection, wall irregularity, presence of a daughter dome, presence of hypoplastic or aplastic A1 arteries and hypoplastic or fetal posterior communicating arteries (PCoA), aneurysm height and width, neck diameter, bottleneck factor, aspect and size ratio, height/width ratio, and diameters and angles of surrounding parent and daughter vessels. Univariable and multivariable statistical analyses were performed to determine the association of morphological characteristics with rupture of MCA aneurysms. Logistic regression was used to build a predictive MCA score.

RESULTS: Greater bottleneck and size ratio, and irregular, multilobed, temporally projecting MCA aneurysms are associated with higher rupture risk, whereas higher M1/M2 ratio, larger width, and the presence of an ipsilateral or bilateral hypoplastic PCoA were inversely associated with rupture. The MCA score had good predictive capacity with area under the receiver operating curve = 0.88.
CONCLUSION: These practical morphological parameters specific to MCA aneurysms are easy to assess when examining 3D reconstructions of unruptured aneurysms and could aid in risk evaluation in these patients.

The oculomotor-tentorial triangle. Part 1: microsurgical anatomy and techniques to enhance exposure

J Neurosurg 130:1426–1434, 2019

Access to the ventrolateral pontomesencephalic area may be required for resecting cavernous malformations, performing revascularization of the upper posterior circulation, and treating vascular lesions such as aneurysms. However, such access is challenging because of nearby eloquent structures. Commonly used corridors to this surgical area include the optico-carotid, supracarotid, and carotid-oculomotor triangles. However, the window lateral to the oculomotor nerve can also be used and has not been studied. The authors describe the anatomical window formed between the oculomotor nerve and the medial tentorial edge (the oculomotor-tentorial triangle [OTT]) to the ventrolateral pontomesencephalic area, and assess techniques to expand it.

METHODS Four cadaveric heads (8 sides) underwent orbitozygomatic craniotomy. The OTT was exposed via a pretemporal approach. The contents of the OTT were determined and their anatomical features were recorded. Also, dimensions of the brainstem surface exposed lateral and inferior to the oculomotor nerve were measured. Measurements were repeated after completing a transcavernous approach (TcA), and after resection of temporal lobe uncus (UnR).

RESULTS The s1 segment and proximal s2 segment of the superior cerebellar artery (SCA) and P2A segment of the posterior cerebral artery (PCA) were the main contents of the OTT, with average exposed lengths of 6.4 ± 1.3 mm and 5.5 ± 1.6 mm for the SCA and PCA, respectively. The exposed length of the SCA increased to 9.6 ± 2.7 mm after TcA (p = 0.002), and reached 11.6 ± 2.4 mm following UnR (p = 0.004). The exposed PCA length increased to 6.2 ± 1.6 mm after TcA (p = 0.04), and reached 10.4 ± 1.8 mm following UnR (p < 0.001). The brainstem surface was exposed 7.1 ± 0.5 mm inferior and 5.6 ± 0.9 mm lateral to the oculomotor nerve initially. The exposure inferior to the oculomotor nerve increased to 9.3 ± 1.7 mm after TcA (p = 0.003), and to 9.9 ± 2.5 mm after UnR (p = 0.21). The exposure lateral to the oculomotor nerve increased to 8.0 ± 1.7 mm after TcA (p = 0.001), and to 10.4 ± 2.4 mm after UnR (p = 0.002).

CONCLUSIONS The OTT is an anatomical window that provides generous access to the upper ventrolateral pontomesencephalic area, s1- and s2-SCA, and P2A-PCA. This window may be efficiently used to address various pathologies in the region and is considerably expandable by TcA and/or UnR.

Microsurgical anatomy of the central core of the brain

J Neurosurg 129:752–769, 2018

The purpose of this study was to describe in detail the cortical and subcortical anatomy of the central core of the brain, defining its limits, with particular attention to the topography and relationships of the thalamus, basal ganglia, and related white matter pathways and vessels.

METHODS The authors studied 19 cerebral hemispheres. The vascular systems of all of the specimens were injected with colored silicone, and the specimens were then frozen for at least 1 month to facilitate identification of individual fiber tracts. The dissections were performed in a stepwise manner, locating each gray matter nucleus and white matter pathway at different depths inside the central core. The course of fiber pathways was also noted in relation to the insular limiting sulci.

RESULTS The insular surface is the most superficial aspect of the central core and is divided by a central sulcus into an anterior portion, usually containing 3 short gyri, and a posterior portion, with 2 long gyri. It is bounded by the anterior limiting sulcus, the superior limiting sulcus, and the inferior limiting sulcus. The extreme capsule is directly underneath the insular surface and is composed of short association fibers that extend toward all the opercula. The claustrum lies deep to the extreme capsule, and the external capsule is found medial to it. Three fiber pathways contribute to form both the extreme and external capsules, and they lie in a sequential anteroposterior disposition: the uncinate fascicle, the inferior fronto-occipital fascicle, and claustrocortical fibers. The putamen and the globus pallidus are between the external capsule, laterally, and the internal capsule, medially. The internal capsule is present medial to almost all insular limiting sulci and most of the insular surface, but not to their most anteroinferior portions. This anteroinferior portion of the central core has a more complex anatomy and is distinguished in this paper as the “anterior perforated substance region.” The caudate nucleus and thalamus lie medial to the internal capsule, as the most medial structures of the central core. While the anterior half of the central core is related to the head of the caudate nucleus, the posterior half is related to the thalamus, and hence to each associated portion of the internal capsule between these structures and the insular surface. The central core stands on top of the brainstem. The brainstem and central core are connected by several white matter pathways and are not separated from each other by any natural division. The authors propose a subdivision of the central core into quadrants and describe each in detail. The functional importance of each structure is highlighted, and surgical approaches are suggested for each quadrant of the central core.

CONCLUSIONS As a general rule, the internal capsule and its vascularization should be seen as a parasagittal barrier with great functional importance. This is of particular importance in choosing surgical approaches within this region.

%d bloggers like this: