Prospective Tractography-Based Targeting for Improved Safety of Focused Ultrasound Thalamotomy

Neurosurgery 84:160–168, 2019

Focused ultrasound thalamotomy (FUS-T) was recently approved for the treatment of refractory essential tremor (ET). Despite its noninvasive approach, FUS-T reinitiated concerns about the adverse effects and long-term efficacy after lesioning.

OBJECTIVE: To prospectively assess the outcomes of FUS-T in 10 ET patients using tractography-based targeting of the ventral intermediate nucleus (VIM).

METHODS: VIM was identified at the intercommissural plane based on its neighboring tracts: the pyramidal tract and medial lemniscus. FUS-T was performed at the center of tractography-defined VIM. Tremor outcomes, at baseline and 3 mo, were assessed independently by the Tremor Research Group.We analyzed targeting coordinates, clinical outcomes, and adverse events. The FUS-T lesion location was analyzed in relation to unbiased thalamic parcellation using probabilisitic tractography. Quantitative diffusionweighted imaging changes were also studied in fiber tracts of interest.

RESULTS: The tractography coordinates were more anterior than the standard. Intraoperatively, therapeutic sonications at the tractography target improved tremor (>50% improvement) without motor or sensory side effects. Sustained improvement in tremor was observed at 3mo(tremor score: 18.3±6.9 vs 8.1±4.4, P=.001).Nomotorweakness and sensory deficits after FUS-T were observed during 6-mo follow-up. Ataxia was observed in 3 patients. FUS-T lesions overlapped with the VIM parcellated with probablisitic tractography. Significant microstructural changes were observed in the white matter connecting VIM with cerebellum and motor cortex.

CONCLUSION: This is the first report of prospective VIM targeting with tractography for FUS-T. These results suggest that tractography-guided targeting is safe and has satisfactory short-term clinical outcomes.

Smartphone-assisted minimally invasive neurosurgery

 

J Neurosurg 130:90–98, 2019

Advances in video and fiber optics since the 1990s have led to the development of several commercially available high-definition neuroendoscopes. This technological improvement, however, has been surpassed by the smartphone revolution. With the increasing integration of smartphone technology into medical care, the introduction of these high-quality computerized communication devices with built-in digital cameras offers new possibilities in neuroendoscopy. The aim of this study was to investigate the usefulness of smartphone-endoscope integration in performing different types of minimally invasive neurosurgery.

METHODS The authors present a new surgical tool that integrates a smartphone with an endoscope by use of a specially designed adapter, thus eliminating the need for the video system customarily used for endoscopy. The authors used this novel combined system to perform minimally invasive surgery on patients with various neuropathological disorders, including cavernomas, cerebral aneurysms, hydrocephalus, subdural hematomas, contusional hematomas, and spontaneous intracerebral hematomas.

RESULTS The new endoscopic system featuring smartphone-endoscope integration was used by the authors in the minimally invasive surgical treatment of 42 patients. All procedures were successfully performed, and no complications related to the use of the new method were observed. The quality of the images obtained with the smartphone was high enough to provide adequate information to the neurosurgeons, as smartphone cameras can record images in high definition or 4K resolution. Moreover, because the smartphone screen moves along with the endoscope, surgical mobility was enhanced with the use of this method, facilitating more intuitive use. In fact, this increased mobility was identified as the greatest benefit of the use of the smartphone-endoscope system compared with the use of the neuroendoscope with the standard video set.

CONCLUSIONS Minimally invasive approaches are the new frontier in neurosurgery, and technological innovation and integration are crucial to ongoing progress in the application of these techniques. The use of smartphones with endoscopes is a safe and efficient new method of performing endoscope-assisted neurosurgery that may increase surgeon mobility and reduce equipment costs.  

Clinical applications of dynamic CT angiography for intracranial lesions

Acta Neurochirurgica (2018) 160:675–680

Dynamic CT angiography (dCTA) augments traditional CTA with temporal resolution and has been demonstrated to influence operative planning in skull base surgery.

Methods Three hundred twenty-five dynamic CTA cases from a single institution were reviewed for indication of study, findings, and comparison to other modalities of imaging.

Results The most frequent application of dCTA was pre-operative surgical planning (59.4%); resection of skull base tumors represented the majority of these pre-operative studies (93.3%). It was also used to evaluate new neurological symptoms (20.9%). Of these, the most common symptoms prompting a dCTA study included headache (22.1%) and visual field deficit (11.8%). The most commonly visualized vascular lesions were partial (22.9%) and complete vascular occlusions (9.0%). Dynamic CTA has also been useful in post-operative imaging for vascular malformations (9.5%) and tumors (2.5%). Finally, dCTA was employed to evaluate ambiguous abnormal findings observed on other imaging modalities (7.7%). Cerebral dCTA ruled out inconclusive abnormal vascular findings visualized on other imaging modalities (64.0%) more frequently than it confirmed them (32.0%), and was inconclusive in a singular case (4.0%).

Conclusions Cerebral dCTA is an evolving new technology with a diverse spectrum of potential applications. In addition to its role in guiding pre-operative planning for skull base surgical cases, dynamic CTA offers excellent spatial and temporal resolution for assessment of vascular lesions.

STN DBS for Parkinson’s disease: results from a series of ten consecutive patients implanted under general anaesthesia with intraoperative use of 3D fluoroscopy to control lead placement

Artis Zeego

Acta Neurochir (2016) 158:1783–1788

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a recognised treatment for advanced Parkinson’s disease (PD). We present our results of 10 consecutive patients implanted under general anaesthesia (GA) using intraoperative robotic three-dimensional (3D) fluoroscopy (Artis Zeego; Siemens, Erlangen, Germany).

Method Ten patients (nine men, one woman) with a mean age of 57.6 (range, 41–67) years underwent surgery between October 2013 and January 2015. The mean duration of PD was 9.2 [1–10] year. The procedure was performed under GA: placement of the stereotactic frame, implantation of the electrodes (Lead 3389; Medtronic, Minnesota,MN, USA) and 3D intraoperative fluoroscopic control (Artis Zeego) with image fusion with the preoperative MRI scans. All patients were evaluated preoperatively and 6 months postoperatively.

Results The mean operative time was 240.1 (185–325) min. Themean Unified Parkinson’s Disease Rating Scale (UPDRS) II OFF medication decreased from 23.9 preoperatively to 15.7 postoperatively. The mean OFF medication UPDRS III decreased from 41 to 11.6 and the UPDRS IV decreased from 10.6 to 7. The mean preoperative and postoperative L-Dopa doses were 1,178.5 and 696.5 mg, respectively. Two complications were recorded: one episode of transient confusion (24 h) and one internal pulse generator (IPG) infection.

Conclusions With improvement in preoperative magnetic resonance imaging (MRI) and the ability to control the position of the leads intraoperatively using Artis Zeego, we now perform this procedure under GA. Our results are comparable to others reported. The significant decrease in the duration of surgery could be associated with a reduced rate of complications (infection, loss of patient collaboration). However, this observation needs to be confirmed.

A Novel Single Twist-Drill Access Device for Multimodal Intracranial Monitoring

A Novel Single Twist-Drill Access Device

Operative Neurosurgery 10:400–411, 2014

Multimodal intracranial monitoring in the neurosurgical patient requires insertion of probes through multiple craniostomies.

OBJECTIVE: To report our 5-year experience with a novel device allowing multimodal monitoring though a single twist-drill hole.

METHODS: All devices (Hummingbird Synergy, Innerspace) were placed at the Kocher point between 2008 and 2013 at our institution. An independent clinical research nurse prospectively collected data on all bedside placements. Placement accuracy was graded on computed tomography scan as grade 1 (ipsilateral frontal horn or third ventricle), grade 2 (contralateral lateral ventricle), and grade 3 (anywhere else). Infection was monitored with serial cerebrospinal fluid samples.

RESULTS: Two hundred seventy-five devices (198 at bedside, 77 in operating room) were placed in patients with spontaneous subarachnoid hemorrhage (49%), traumatic brain injury (47%), and others (4%) for a median duration of 6 days. A junior (postgraduate year 1-2), midlevel (postgraduate year 3-4), or senior resident (postgraduate year 5-6) placed 39%, 32%, and 29% of the devices, respectively. Ninety-two percent of all devices placed were draining cerebrospinal fluid, ie, were grade 1 (75%) or 2 (17%). Placement accuracy did not vary with level of training. Complications included hemorrhage (10%) and infection (4%), with 1 patient requiring intraparenchymal hematoma evacuation and a second requiring abscess drainage. These rates were lower than reported in the literature for standard external ventricular drains.

CONCLUSION: Hummingbird Synergy is a novel single-port access device for multimodal intracranial monitoring that can be placed safely at the bedside or in the operating room with placement accuracy and has a complication profile similar to or better than that for standard external ventricular drains.

Use of High-Field Intraoperative Magnetic Resonance Imaging to Enhance the Extent of Resection of Enhancing and Nonenhancing Gliomas

Use of High-Field Intraoperative Magnetic Resonance Imaging to Enhance the Extent of Resection of Enhancing and Nonenhancing Gliomas

Neurosurgery 74:339–350, 2014

Intraoperative magnetic resonance imaging (IoMRI) is used to improve the extent of resection of brain tumors. Most previous studies evaluating the utility of IoMRI have focused on enhancing tumors.

OBJECTIVE: To report our experience with the use of high-field IoMRI (1.5 T) for both enhancing and nonenhancing gliomas.

METHODS: An institutional review board–approved retrospective review was performed of 102 consecutive glioma patients (104 surgeries, 2010-2012). Pre-, intra-, and postoperative tumor volumes were assessed. Analysis was performed with the use of volumetric T2 images in 43 nonenhancing and 13 minimally enhancing tumors and with postcontrast volumetric magnetization-prepared rapid gradient-echo images in 48 enhancing tumors.

RESULTS: In 58 cases, preoperative imaging showed tumors likely to be amenable to complete resection. Intraoperative electrocorticography was performed in 32 surgeries, and 14 cases resulted in intended subtotal resection of tumors due to involvement of deep functional structures. No further resection (complete resection before IoMRI) was required in 25 surgeries, and IoMRI showed residual tumor in 79 patients. Of these, 25 surgeries did not proceed to further resection (9 due to electrocorticography findings, 14 due to tumor in deep functional areas, and 2 due to surgeon choice). Additional resection that was performed in 54 patients resulted in a final median residual tumor volume of 0.21 mL (0.6%). In 79 patients amenable to complete resection, the intraoperative median residual tumor volume for the T2 group was higher than for the magnetization-prepared rapid gradient-echo group (1.088 mL vs 0.437 mL; P = .049), whereas the postoperative median residual tumor volume was not statistically significantly different between groups.

CONCLUSION: IoMRI enhances the extent of resection, particularly for nonenhancing gliomas.

Validating the Use of Smartphone-Based Accelerometers for Performance Assessment in a Simulated Neurosurgical Task

Validating the Use of Smartphone-Based Accelerometers for Performance Assessment in a Simulated Neurosurgical Task

Operative Neurosurgery 10:57–65, 2014

Reductions in working hours affect training opportunities for surgeons. Surgical simulation is increasingly proposed to help bridge the resultant training gap. For simulation training to translate effectively into the operating theater, acquisition of technical proficiency must be objectively assessed. Evaluating “economy of movement” is one way to achieve this.

OBJECTIVE: We sought to validate a practical and economical method of assessing economy of movement during a simulated task. We hypothesized that accelerometers, found in smartphones, provide quantitative, objective feedback when attached to a neurosurgeon’s wrists.

METHODS: Subjects (n = 25) included consultants, senior registrars, junior registrars, junior doctors, and medical students. Total resultant acceleration (TRA), average resultant acceleration, and movements with acceleration .0.6g (suprathreshold acceleration events) were recorded while subjects performed a simulated dural closure task.

RESULTS: Students recorded an average TRA 97.0 6 31.2 ms22 higher than senior registrars (P = .03) and 103 6 31.2 ms22 higher than consultants (P = .02). Similarly, junior doctors accrued an average TRA 181 6 31.2 ms22 higher than senior registrars (P , .001) and 187 6 31.2 ms22 higher than consultants (P , .001). Significant correlations were observed between surgical outcome (as measured by quality of dural closure) and both TRA (r = .44, P , .001) and number of suprathreshold acceleration events (r = .33, P, .001). TRA (219 6 66.6 ms22; P = .01) and number of suprathreshold acceleration events (127 6 42.5; P = .02) dropped between the first and fourth trials for junior doctors, suggesting procedural learning. TRA was 45.4 6 17.1 ms22 higher in the dominant hand for students (P = .04) and 57.2 6 17.1 ms22 for junior doctors (P = .005), contrasting with even TRA distribution between hands (acquired ambidexterity) in senior groups.

CONCLUSION: Data from smartphone-based accelerometers show construct validity as an adjunct for assessing technical performance during simulation training.

Flexible Omnidirectional Carbon Dioxide Laser as an Effective Tool for Resection of Brainstem, Supratentorial, and Intramedullary Cavernous Malformations

Ponto-mesencephalic cavernoma

Operative Neurosurgery 10:34–45, 2014

Lasers have a long history in neurosurgery, yet bulky designs and difficult ergonomics limit their use. With its ease of manipulation and multiple applications, the OmniGuide CO2 laser has reintroduced laser technology to the microsurgical resection of brain and spine lesions. This laser, delivered through a hollow-core fiber lined with a unidirectional mirror, minimizes energy loss and allows precise targeting.

OBJECTIVE: To analyze resections performed by the senior author from April 2009 to March 2013 of 58 cavernous malformations (CMs) in the brain and spine with the use of the OmniGuide CO2 laser, to reflect on lessons learned from laser use in eloquent areas, and to share data on comparisons of laser power calibration and histopathology.

METHODS: Data were collected from electronic medical records, radiology reports, operative room records, OmniGuide CO2 laser case logs, and pathology records.

RESULTS: Of 58 CMs, approximately 50% were in the brainstem (30) and the rest were in supratentorial (26) and intramedullary spinal locations (2). Fifty-seven, ranging from 5 to 45 mm, were resected, with a subtotal resection in 1. Laser power ranged from 2 to 10 W. Pathology specimens showed minimal thermal damage compared with traditionally resected specimens with bipolar coagulation.

CONCLUSION: The OmniGuide CO2 laser is safe and has excellent precision for the resection of supratentorial, brainstem, and spinal intramedullary CMs. No laser-associated complications occurred, and very low energy was used to dissect malformations from their surrounding hemosiderin-stained parenchymas. The authors recommend its use for deep-seated and critically located CMs, along with traditional tools.

Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons

Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons

J Neurosurg 120:489–492, 2014

The advent of multimaterial 3D printers allows the creation of neurosurgical models of a more realistic nature, mimicking real tissues.

The authors used the latest generation of 3D printer to create a model, with an inbuilt pathological entity, of varying consistency and density. Using this model the authors were able to take trainees through the basic steps, from navigation and planning of skin flap to performing initial steps in a craniotomy and simple tumor excision.

As the technology advances, models of this nature may be able to supplement the training of neurosurgeons in a simulated operating theater environment, thus improving the training experience

Intraoperative angiography reloaded: a new hybrid operating theater for combined endovascular and surgical treatment of cerebral arteriovenous malformations

Intraoperative angiography reloaded

Acta Neurochir (2013) 155:2071–2078

Multimodality treatment suites for patients with cerebral arteriovenous malformations (AVM) have recently become available. This study was designed to evaluate feasibility, safety and impact on treatment of a new intraoperative flat-panel (FP) based integrated surgical and imaging suite for combined endovascular and surgical treatment of cerebral AVM.

Methods Twenty-five patients with AVMs to treat with combined endovascular and surgical interventions were prospectively enrolled in this consecutive case series. The hybrid suite allows combined endovascular and surgical approaches with intraoperative scanner-like imaging (XperCT®) and intraoperative 3D rotational angiography (3D-RA). The impact of intraoperative multimodal imaging on feasibility, workflow of combined interventions, surgery, and unexpected imaging findings were analyzed.

Results Twenty-five patients (mean age 38±18.6 year) with a median Spetzler-Martin grade 2 AVM (range 1–4) underwent combined endovascular and surgical procedures. Sixteen patients presented with a ruptured AVM and nine with an unruptured AVM. In 16 % (n=4) of cases, intraoperative imaging visualized AVM remnants ≤3 mm and allowed for completion of the resections in the same sessions. Complete resection was confirmed in all n =16 patients who had follow-up angiography one year after surgery so far. All diagnostic and therapeutical steps, including angiographic control, were performed without having to move the patients

Conclusion The hybrid neurointerventional suite was shown to be a safe and useful setup which allowed for unconstrained combined microsurgical and neuroradiological workflow. It reduces the need for extraoperative angiographic controls and subsequent potential surgical revisions a second time, as small AVM remnants can be detected with high security.

The Mirroring Technique: A Navigation-Based Method for Reconstructing a Symmetrical Orbit and Cranial Vault

Mirroring technique

Neurosurgery 73[ONS Suppl 1]:ons24–ons29, 2013

The reconstruction of orbital structures and the cranial vault curvature can be challenging after trauma or wide resections for tumors. Sophisticated methods have been developed recently, but these are resource- and time-consuming.

OBJECTIVE: We report the mirroring technique, which is an effective and costless application for navigation-guided reconstruction procedures.

METHODS: At the time of the reconstruction, high-resolution images are reloaded while forcing a left-right axial flip. The pointer subsequently enables a virtual 3- dimensional projection of the position of the contralateral normal anatomy.

RESULTS: This method was applied successfully in 2 cases of en plaque sphenoid wing meningiomas with secondary exophthalmia.

CONCLUSION: The mirroring technique represents an accurate method of outlining the contralateral normal anatomy onto the pathological side based on navigation guidance.

KEY WORDS:

Automated intracranial pressure-controlled cerebrospinal fluid external drainage with LiquoGuard®

Automated intracranial pressure-controlled CSF LiquoGuard

Acta Neurochir (2013) 155:1589–1595

LiquoGuard is a new device for intracranial pressure (ICP)-controlled drainage of cerebrospinal fluid (CSF). This present study evaluates the accuracy of ICP measurement via the LiquoGuard device in comparison with Spiegelberg. Thus, we compared data ascertained from simultaneous measurement of ICP using tip-transducer and tip-sensor devices.

Material and Methods A total of 1,764 monitoring hours in 15 patients (range, 52–219 h) were analysed. All patients received an intraventricular Spiegelberg III probe with the drainage catheter connected to the LiquoGuard system. ICP reading of both devices was performed on an hourly basis. Statistical analysis was done by applying Pearson correlation and Wilcoxon-matched pair test (p<0.05).

Results Mean ICP values were 11±5 mmHg (Spiegelberg) and 10±7 mmHg (LiquoGuard); the values measured with both devices correlated well (p=0.001; Pearson correlation =0.349; n=1,764). In two of the 15 patients with slit ventricles, episodes of significant differences in measured values could be observed. Both patients suffering from slit ventricles failed to produce reliable measurement with the external transducer of the LiquoGuard.

Conclusions LiquoGuard is a valuable new device for ICP-controlled CSF drainage. However, LiquoGuard tends to provide misleading results in slit ventricles. Thus, before these drawbacks are further analysed, the authors recommend additional ICP measurement with internal tip-sensor devices to avoid dangerous erroneous interpretation of ICP data.

Interactive presurgical simulation applying 3D techniques

Presurgical simulation 3Dimaging

J Neurosurg 119:94–105, 2013

In this paper, the authors’ goal was to report their novel presurgical simulation method applying interactive virtual simulation (IVS) using 3D computer graphics (CG) data and microscopic observation of color-printed plaster models based on these CG data in surgery for skull base and deep tumors.

Methods. For 25 operations in 23 patients with skull base or deep intracranial tumors (meningiomas, schwannomas, epidermoid tumors, chordomas, and others), the authors carried out presurgical simulation based on 3D CG data created by image analysis for radiological data. Interactive virtual simulation was performed by modifying the 3D CG data to imitate various surgical procedures, such as bone drilling, brain retraction, and tumor removal, with manipulation of a haptic device. The authors also produced color-printed plaster models of modified 3D CG data by a selective laser sintering method and observed them under the operative microscope.

Results. In all patients, IVS provided detailed and realistic surgical perspectives of sufficient quality, thereby allowing surgeons to determine an appropriate and feasible surgical approach. Surgeons agreed that in 44% of the 25 operations IVS showed high utility (as indicated by a rating of “prominent”) in comprehending 3D microsurgical anatomies for which reconstruction using only 2D images was complicated. Microscopic observation of color-printed plaster models in 12 patients provided further utility in confirming realistic surgical anatomies.

Conclusions. The authors’ presurgical simulation method applying advanced 3D imaging and modeling techniques provided a realistic environment for practicing microsurgical procedures virtually and enabled the authors to ascertain complex microsurgical anatomy, to determine the optimal surgical strategies, and also to efficiently educate neurosurgical trainees, especially during surgery for skull base and deep tumors.

Blood-based biomarkers for malignant gliomas

Blood-based biomarkers for malignant gliomas

J Neurooncol (2013) 113:345–352

Malignant gliomas remain incurable and present unique challenges to clinicians, radiologists and clinical and translational investigators. One of the major problems in treatment of these tumors is our limited ability to reliably assess tumor response or progression.

The most frequently used neuro-imaging studies (contrast-enhanced MRI and CT) rely on changes of blood–brain barrier (BBB) integrity, providing only an indirect assessment of tumor burden. In addition, the BBB can be altered by commonly used interventions including radiation, glucocorticoids and vascular endothelial growth factor inhibitors, further complicating the interpretation of scans. Newer radiologic techniques including PET and magnetic resonance spectroscopy are theoretically promising but thus far have not meaningfully changed the assessment of patients with malignant gliomas. A tumor-specific, bloodbased biomarker would be of immediate use to clinicians and investigators if sufficiently sensitive and specific.

This review discusses the potential utility of such a biomarker, the general classes of tumor-derived blood-based biomarkers and it summarizes the currently available data on circulating tumor cells, circulating nucleic acids and circulating proteins in patients with malignant gliomas. It is unclear which marker or marker class appears to be the most promising for these tumors.

This article provides thoughts on how novel candidate blood-based markers could be discovered and tested in a more comprehensive way and why these efforts should be among the top priorities in neuro-oncologic research in the coming years.

Intraoperative fluorescence for resection of hemangioblastomas

Intraoperative fluorescence for resection of hemangioblastomas

Acta Neurochir (2013) 155:1287–1292

Resection of hemangioblastomas can be challenging due to their high vascularity and intimate association with neighboring cerebrovascular structures. The authors present their intraoperative findings using fluorescein angiography and fluorescence for removal of hemangioblastomas in an attempt to improve the safety and extent of resection.

Methods From April through August 2012, four patients were diagnosed with hemangioblastomas, 3 in the cerebellum and 1 in the medulla oblongata. Low-dose (4 mg/kg) sodium fluorescein was injected intravenously immediately before microdissection. The area of interest was inspected through a microscope-integrated fluorescent module.

Results In three superficially located tumors, the vascular pattern of feeding and draining vessels could be easily identified with fluorescein angiography. The resection of the tumors was guided using real-time fluorescence mode. For each patient, histopathologic examination of the lesion confirmed the diagnosis of hemangioblastoma. All samples of fluorescent tissue resected were confirmed to contain tumor. No patient experienced any complication.

Conclusion Low-dose sodium fluorescein used in conjunction with a microscope-integrated fluorescence module is a potentially useful tool for localization, vascular characterization, and resection of hemangioblastomas.

Interactive presurgical simulation applying 3D techniques

3D CG data and the color-printed plaster model for a left tentorial meningioma

J Neurosurg 119:94–105, 2013

In this paper, the authors’ goal was to report their novel presurgical simulation method applying interactive virtual simulation (IVS) using 3D computer graphics (CG) data and microscopic observation of color-printed plaster models based on these CG data in surgery for skull base and deep tumors.

Methods. For 25 operations in 23 patients with skull base or deep intracranial tumors (meningiomas, schwannomas, epidermoid tumors, chordomas, and others), the authors carried out presurgical simulation based on 3D CG data created by image analysis for radiological data. Interactive virtual simulation was performed by modifying the 3D CG data to imitate various surgical procedures, such as bone drilling, brain retraction, and tumor removal, with manipulation of a haptic device. The authors also produced color-printed plaster models of modified 3D CG data by a selective laser sintering method and observed them under the operative microscope.

Results. In all patients, IVS provided detailed and realistic surgical perspectives of sufficient quality, thereby allowing surgeons to determine an appropriate and feasible surgical approach. Surgeons agreed that in 44% of the 25 operations IVS showed high utility (as indicated by a rating of “prominent”) in comprehending 3D microsurgical anatomies for which reconstruction using only 2D images was complicated. Microscopic observation of color-printed plaster models in 12 patients provided further utility in confirming realistic surgical anatomies.

Conclusions. The authors’ presurgical simulation method applying advanced 3D imaging and modeling techniques provided a realistic environment for practicing microsurgical procedures virtually and enabled the authors to ascertain complex microsurgical anatomy, to determine the optimal surgical strategies, and also to efficiently educate neurosurgical trainees, especially during surgery for skull base and deep tumors.

5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping

5ALA and functional mapping

Acta Neurochir (2013) 155:965–972

Only few data are available on the specific topic of 5-aminolevulinic acid (5-ALA) guided surgery of high-grade gliomas (HGG) located in eloquent areas. Studies focusing specifically on the post-operative clinical outcome of such patients are yet not available, and it has not been so far explored whether such approach could be more suitable for some particular subgroups of patients.

Methods Patients affected by HGG in eloquent areas who underwent surgery assisted by 5-ALA fluorescence and intra-operative monitoring were prospectively recruited in our Department between June 2011 and August 2012. Resection rate was reported as complete resection of enhancing tumor (CRET), gross total resection (GTR) >98 % and GTR>90 %. Clinical outcome was evaluated at 7, 30, and 90 days after surgery.

Results Thirty-one patients were enrolled. Resection was complete (CRET) in 74 % of patients. Tumor removal was stopped to avoid neurological impairment in 26 % of cases. GTR>98 % and GTR>90 % was achieved in 93 % and 100 % of cases, respectively. First surgery and awake surgery had a CRET rate of 80 % and 83 %, respectively. Even though at the first-week assessment 64 % of patients presented neurological impairment, there was a 3 % rate of severe morbidity at the 90th day assessment. Newly diagnosed patients had a significantly lower morbidity (0 %) and post-operative higher median KPS. Both pre-operative neurological condition and improvement after corticosteroids resulted significantly predictive of post-operative functional outcome.

Conclusions 5-ALA surgery assisted by functional mapping makes high HGG resection in eloquent areas feasible , through a reasonable rate of late morbidity. This emerges even more remarkably for selected patients.

A Comparison of Language Mapping by Preoperative Navigated Transcranial Magnetic Stimulation and Direct Cortical Stimulation During Awake Surgery

A_Comparison_of_Language_Mapping_by_Preoperative

Neurosurgery 72:808–819, 2013

Navigated transcranial magnetic stimulation (nTMS) is increasingly used in presurgical brain mapping. Preoperative nTMS results correlate well with direct cortical stimulation (DCS) data in the identification of the primary motor cortex. Repetitive nTMS can also be used for mapping of speech-sensitive cortical areas.

OBJECTIVE: The current cohort study compares the safety and effectiveness of preoperative nTMS with DCS mapping during awake surgery for the identification of language areas in patients with left-sided cerebral lesions.

METHODS: Twenty patients with tumors in or close to left-sided language eloquent regions were examined by repetitive nTMS before surgery. During awake surgery, language-eloquent cortex was identified by DCS. nTMS results were compared for accuracy and reliability with regard to DCS by projecting both results into the cortical parcellation system.

RESULTS: Presurgical nTMS maps showed an overall sensitivity of 90.2%, specificity of 23.8%, positive predictive value of 35.6%, and negative predictive value of 83.9% compared with DCS. For the anatomic Broca’s area, the corresponding values were a sensitivity of 100%, specificity of 13.0%, positive predictive value of 56.5%, and negative predictive value of 100%, respectively.

CONCLUSION: Good overall correlation between repetitive nTMS and DCS was observed, particularly with regard to negatively mapped regions. Noninvasive inhibition mapping with nTMS is evolving as a valuable tool for preoperative mapping of language areas. Yet its low specificity in posterior language areas in the current study necessitates further research to refine the methodology.

Stereoelectroencephalography: Surgical Methodology, Safety, and Stereotactic Application Accuracy in 500 Procedures

Stereoelectroencephalography___Surgical

Neurosurgery 72:353–366, 2013

Stereoelectroencephalography (SEEG) methodology, originally developed by Talairach and Bancaud, is progressively gaining popularity for the presurgical invasive evaluation of drug-resistant epilepsies.

OBJECTIVE: To describe recent SEEG methodological implementations carried out in our center, to evaluate safety, and to analyze in vivo application accuracy in a consecutive series of 500 procedures with a total of 6496 implanted electrodes.

METHODS: Four hundred nineteen procedures were performed with the traditional 2- step surgical workflow, which was modified for the subsequent 81 procedures. The new workflow entailed acquisition of brain 3-dimensional angiography and magnetic resonance imaging in frameless and markerless conditions, advanced multimodal planning, and robot-assisted implantation. Quantitative analysis for in vivo entry point and target point localization error was performed on a sub–data set of 118 procedures (1567 electrodes).

RESULTS: The methodology allowed successful implantation in all cases. Major complication rate was 12 of 500 (2.4%), including 1 death for indirect morbidity. Median entry point localization error was 1.43 mm (interquartile range, 0.91-2.21 mm) with the traditional workflow and 0.78 mm (interquartile range, 0.49-1.08 mm) with the new one (P , 2.2 · 10216). Median target point localization errors were 2.69 mm (interquartile range, 1.89-3.67 mm) and 1.77 mm (interquartile range, 1.25-2.51 mm; P, 2.2 · 10216), respectively.

CONCLUSION: SEEG is a safe and accurate procedure for the invasive assessment of the epileptogenic zone. Traditional Talairach methodology, implemented by multimodal planning and robot-assisted surgery, allows direct electrical recording from superficial and deep-seated brain structures, providing essential information in the most complex cases of drug-resistant epilepsy.

Advanced 3-Dimensional Planning in Neurosurgery

Virtual planning of different possible approaches for the surgical treatment of a giant carotid-ophthalmic aneurysm

Neurosurgery 72:A54–A62, 2013

During the past decades, medical applications of virtual reality technology have been developing rapidly, ranging from a research curiosity to a commercially and clinically important area of medical informatics and technology. With the aid of new technologies, the user is able to process large amounts of data sets to create accurate and almost realistic reconstructions of anatomic structures and related pathologies.

As a result, a 3-dimensional (3-D) representation is obtained, and surgeons can explore the brain for planning or training. Further improvement such as a feedback system increases the interaction between users and models by creating a virtual environment. Its use for advanced 3-D planning in neurosurgery is described. Different systems of medical image volume rendering have been used and analyzed for advanced 3-D planning: 1 is a commercial “ready-to-go” system (Dextroscope, Bracco, Volume Interaction, Singapore), whereas the others are open-source-based software (3-D Slicer, FSL, and FreesSurfer).

Different neurosurgeons at our institution experienced how advanced 3-D planning before surgery allowed them to facilitate and increase their understanding of the complex anatomic and pathological relationships of the lesion. They all agreed that the preoperative experience of virtually planning the approach was helpful during the operative procedure.

Virtual reality for advanced 3-D planning in neurosurgery has achieved considerable realism as a result of the available processing power of modern computers. Although it has been found useful to facilitate the understanding of complex anatomic relationships, further effort is needed to increase the quality of the interaction between the user and the model.