Transuncal Selective Amygdalohippocampectomy by an Inferolateral Preseptal Endoscopic Approach Through Inferior Eyelid Conjunctival Incision: An Anatomic Study

Operative Neurosurgery 25:199–208, 2023

Transorbital endoscopic approaches have been described for pathologies of anterior and middle fossae. Standard lateral orbitotomy gives access to mesial temporal lobe, but the axis of work is partially obscured by the temporal pole and working corridor is limited.

OBJECTIVE: To evaluate the usefulness of an inferolateral orbitotomy to provide a more direct corridor to perform a transuncal selective amygdalohippocampectomy.

METHODS: Three adult cadaveric specimens were used for a total of 6 dissections. A step-by-step description and illustration of the transuncal corridor for a selective amygdalohippocampectomy were performed using the inferolateral orbitotomy through an inferior eyelid conjunctival incision. The anatomic landmarks were demonstrated in detail. Orbitotomies and angles of work were measured from computed tomography scans, and the area of resection was illustrated by postdissection MRI.

RESULTS: Inferior eyelid conjunctival incision was made for exposure of the inferior orbital rim. Inferolateral transorbital approach was performed to access the transuncal corridor. Endoscopic selective amygdalohippocampectomy was performed through the entorhinal cortex without damage to the temporal neocortex or Meyer’s loop. The mean horizontal diameter of the osteotomy was 14.4 mm, and the vertical one was 13.6 mm. The mean angles of work were 65°and 35.5°in the axial and sagittal planes, respectively. Complete amygdalohippocampectomy was achieved in all 6 dissections.

CONCLUSION: Transuncal selective amygdalohippocampectomy was feasible in cadaveric specimens using the inferolateral transorbital endoscopic approach avoiding damage to the temporal neocortex and Meyer’s loop. The inferior eyelid conjunctival incision may result in an excellent cosmetic outcome.

Exoscope improves visualization and extent of hippocampal resection in temporal lobectomy

Acta Neurochirurgica (2023) 165:259–263

Anterior temporal lobectomy (ATL) is a safe and well-validated procedure in the treatment of temporal lobe epilepsy (TLE), but is a challenging technique to master and still confers a risk of morbidity and mortality due to the complex anatomy of the mesial temporal lobe structures. Automated robotic 3D exoscopes have been developed to address limitations traditionally associated with microscopic visualization, allowing for ergonomic, high-definition 3D visualization with hands-free control of the robot. Given the potential advantages of using such a system for visualization of complex anatomy seen during mesial structure resection in ATL, this group sought to investigate impact on the percentage of hippocampal resection in both exoscope and microscope guided procedures.

Methods We conducted a retrospective analysis of 20 consecutive patients undergoing standard ATL for treatment of medically refractory TLE at our institution. Using pre-operative and post-operative imaging, the coronal plane cuts in which either the head, body, or tail of the hippocampus appeared were counted. The number of cuts in which the hippocampus appeared were multiplied by slice thickness to estimate hippocampal length.

Results Mean percentage of hippocampal resection was 61.1 (SD 13.1) and 76.5 (SD 6.5) for microscope and exoscope visualization, respectively (p = 0.0037).

Conclusion Use of exoscope for mesial resection during ATL has provided good visualization for those in the operating room and the potential for a safe increase in hippocampal resection in our series. Further investigation of its applications should be evaluated to see if it will improve outcomes.

Functional Reorganization of the Mesial Frontal Premotor Cortex in Patients With Supplementary Motor Area Seizures

Neurosurgery 92:186–194, 2023

Direct cortical stimulation of the mesial frontal premotor cortex, including the supplementary motor area (SMA), is challenging in humans. Limited access to these brain regions impedes understanding of human premotor cortex functional organization and somatotopy.

OBJECTIVE: To test whether seizure onset within the SMA was associated with functional remapping of mesial frontal premotor areas in a cohort of patients with epilepsy who underwent awake brain mapping after implantation of interhemispheric subdural electrodes.

METHODS: Stimulation trials from 646 interhemispheric subdural electrodes were analyzed and compared between patients who had seizure onset in the SMA (n = 13) vs patients who had seizure onset outside of the SMA (n = 12). 1:1 matching with replacement between SMA and non-SMA data sets was used to ensure similar spatial distribution of electrodes. Centroids and 95% confidence regions were computed for clustered head, trunk, upper extremity, lower extremity, and vision responses. A generalized linear mixedeffects model was used to test for significant differences in the resulting functional maps. Clinical, radiographic, and histopathologic data were reviewed.

RESULTS: After analyzing direct cortical stimulation trials from interhemispheric electrodes, we found significant displacement of the head and trunk responses in SMA compared with non-SMA patients (P < .01 for both). These differences remained significant after accounting for structural lesions, preexisting motor deficits, and seizure outcome.

CONCLUSION: The somatotopy of the mesial frontal premotor regions is significantly altered in patients who have SMA-onset seizures compared with patients who have seizure onset outside of the SMA, suggesting that functional remapping can occur in these brain regions.

Initial experience with magnetic resonance–guided focused ultrasound stereotactic surgery for central brain lesions in young adults

J Neurosurg 137:760–767, 2022

Magnetic resonance–guided focused ultrasound (MRgFUS) is an incisionless procedure capable of thermoablation through the focus of multiple acoustic beams. Although MRgFUS is currently approved for the treatment of tremor in adults, its safety and feasibility profile for intracranial lesions in the pediatric and young adult population remains unknown.

METHODS The long-term outcomes of a prospective single-center, single-arm trial of MRgFUS at Nicklaus Children’s Hospital in Miami, Florida, are presented. Patients 15–22 years of age with centrally located lesions were recruited, clinically consistent with WHO grade I tumors that require surgical intervention. This cohort consisted of 4 patients with hypothalamic hamartoma (HH), and 1 patient with tuberous sclerosis complex harboring a subependymal giant cell astrocytoma (SEGA).

RESULTS In each case, high-intensity FUS was used to target the intracranial lesion. Real-time MRI was used to monitor the thermoablations. Primary outcomes of interest were tolerability, feasibility, and safety of FUS. The radiographic ablation volume on intra- and postoperative MRI was also assessed. All 5 patients tolerated the procedure without any complications. Successful thermoablation was achieved in 4 of the 5 cases; the calcified SEGA was undertreated due to intratumor calcification, which prevented attainment of the target ablation temperature. The HHs underwent target tissue thermoablations that led to MR signal changes at the treatment site. For the patients harboring HHs, FUS thermoablations occurred without procedure-related complications and led to improvement in seizure control or hypothalamic hyperphagia. All 5 patients were discharged home on postoperative day 1 or 2, without any readmissions. There were no cases of hemorrhage, electrolyte derangement, endocrinopathy, or new neurological deficit in this cohort.

CONCLUSIONS This experience demonstrates that FUS thermoablation of centrally located brain lesions in adolescents and young adults can be performed safely and that it provides therapeutic benefit for associated symptoms. Clinical trial registration no.: NCT03028246


Microvascular anatomy of the medial temporal region

J Neurosurg 137:747–759, 2022

The authors investigated the microvascular anatomy of the hippocampus and its implications for medial temporal tumor surgery. They aimed to reveal the anatomical variability of the arterial supply and venous drainage of the hippocampus, emphasizing its clinical implications for the removal of associated tumors.

METHODS Forty-seven silicon-injected cerebral hemispheres were examined using microscopy. The origin, course, irrigation territory, spatial relationships, and anastomosis of the hippocampal arteries and veins were investigated. Illustrative cases of hippocampectomy for medial temporal tumor surgery are also provided.

RESULTS The hippocampal arteries can be divided into 3 segments, the anterior (AHA), middle (MHA), and posterior (PHA) hippocampal artery complexes, which correspond to irrigation of the hippocampal head, body, and tail, respectively. The uncal hippocampal and anterior hippocampal-parahippocampal arteries contribute to the AHA complex, the posterior hippocampal-parahippocampal arteries serve as the MHA complex, and the PHA and splenial artery compose the PHA complex. Rich anastomoses between hippocampal arteries were observed, and in 11 (23%) hemispheres, anastomoses between each segment formed a complete vascular arcade at the hippocampal sulcus. Three veins were involved in hippocampal drainage—the anterior hippocampal, anterior longitudinal hippocampal, and posterior longitudinal hippocampal veins—which drain the hippocampal head, body, and tail, respectively, into the basal and internal cerebral veins.

CONCLUSIONS An understanding of the vascular variability and network of the hippocampus is essential for medial temporal tumor surgery via anterior temporal lobectomy with amygdalohippocampectomy and transsylvian selective amygdalohippocampectomy. Stereotactic procedures in this region should also consider the anatomy of the vascular arcade at the hippocampal sulcus.

Acute Postoperative Seizures and Engel Class Outcome at 1 Year Postselective Laser Amygdalohippocampal Ablation for Mesial Temporal Lobe Epilepsy

Neurosurgery 91:347–354, 2022

MRI-guided laser interstitial thermal therapy (MRgLITT) for mesial temporal lobe epilepsy is a safe, minimally invasive alternative to traditional surgical approaches. Prognostic factors associated with efficacy are debated; preoperative epilepsy duration and semiology seem to be important variables.

OBJECTIVE: To determine whether acute postoperative seizure (APOS) after MRgLITT for mesial temporal lobe epilepsy is associated with seizure freedom/Engel class outcome at 1 year.

METHODS: A single-institution retrospective study including adults undergoing first time MRgLITT for mesial temporal lobe epilepsy (2010-2019) with ≥1-year follow-up. Preoperative data included sex, epilepsy duration, number of antiepileptics attempted, weekly seizure frequency, seizure semiology, and radiographically verified anatomic lesion at seizure focus. Postoperative data included clinical detection of APOS within 7 days postoperatively, and immediate amygdala, hippocampal, entorhinal, and parahippocampal residual volumes determined using quantitative imaging postprocessing. Primary outcome was seizure freedom/Engel classification 1 year postoperatively.

RESULTS: Of 116 patients, 53%(n = 61) were female, with an average epilepsy duration of 21 (±14) years, average 6 failed antiepileptics (±3), and weekly seizure frequency of 5. APOS was associated with worse Engel class (P = .010), conferring 6.3 times greater odds of having no improvement vs achieving seizure freedom at 1 year. Residual amygdala, hippocampal, entorhinal, and parahippocampal volumes were not statistically significant prognostic factors.

CONCLUSION: APOS was associated with a lower chance of seizure freedom at 1 year post-MRgLITT for mesial temporal lobe epilepsy. Amygdala, hippocampal, entorhinal, and parahippocampal residual volumes after ablation were not significant prognostic factors.


Extent of parahippocampal ablation is associated with seizure freedom after laser amygdalohippocampotomy

J Neurosurg 135:1742–1751, 2021

The authors aimed to examine the relationship between mesial temporal subregion ablation volume and seizure outcome in a diverse cohort of patients who underwent stereotactic laser amygdalohippocampotomy (SLAH) for mesial temporal lobe epilepsy (MTLE).

METHODS Seizure outcomes and pre- and postoperative images were retrospectively reviewed in patients with MTLE who underwent SLAH at a single institution. Mesial temporal subregions and the contrast-enhancing ablation volume were manually segmented. Pre- and postoperative MR images were coregistered to assess anatomical ablation. Postoperative MRI and ablation volumes were also spatially normalized, enabling the assessment of seizure outcome with heat maps.

RESULTS Twenty-eight patients with MTLE underwent SLAH, 15 of whom had mesial temporal sclerosis (MTS). The rate of Engel class I outcome at 1 year after SLAH was 39% overall: 47% in patients with MTS and 31% in patients without MTS. The percentage of parahippocampal gyrus (PHG) ablated was higher in patients with an Engel class I outcome (40% vs 25%, p = 0.04). Subregion analysis revealed that extent of ablation in the parahippocampal cortex (35% vs 19%, p = 0.03) and angular bundle (64% vs 43%, p = 0.02) was positively associated with Engel class I outcome. The degree of amygdalohippocampal complex (AHC) ablated was not associated with seizure outcome (p = 0.30).

CONCLUSIONS Although the AHC was the described target of SLAH, seizure outcome in this cohort was associated with degree of ablation for the PHG, not the AHC. Complete coverage of both the AHC and PHG is technically challenging, and more work is needed to optimize seizure outcome after SLAH.

What have we learned from 8 years of deep brain stimulation of the anterior thalamic nucleus? Experiences and insights of a single center

J Neurosurg 135:619–628, 2021

In the absence of a standard or guideline for the treatment of epilepsy patients with deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT), systematic single-center investigations are essential to establish effective approaches. Here, the authors report on the long-term results of one of the largest single-center ANT DBS cohorts.

METHODS The outcome data of 23 consecutive patients with transventricularly implanted electrodes were retrospectively analyzed with regard to adverse events, lead placement, stimulation-related side effects, and changes in seizure frequency. Depression and quality-of-life scores were collected in a subgroup of 9 patients.

RESULTS All but 2 patients initially underwent bilateral implantation, and 84.4% of all DBS leads were successfully located within the ANT. The mean follow-up time was 46.57 ± 23.20 months. A seizure reduction > 50% was documented in 73.9% of patients, and 34.6% achieved an Engel class I outcome. In 3 patients, clinical response was achieved by switching the electrode contact or changing from the monopolar to bipolar stimulation mode. Unilateral implantation seemed ineffective, whereas bilateral stimulation with successful ANT implantation only on one side led to a clinical response. Double stimulation with additional vagus nerve stimulation was safe. Changes in cycling mode or stimulation amplitude influenced therapy tolerability and, only to a lesser extent, seizure frequency. Side effects were rare and typically vanished by lowering the stimulation amplitude or changing the active electrode contact. Furthermore, depression and aspects of quality of life significantly improved with ANT DBS treatment.

CONCLUSIONS The transventricular approach as well as double stimulation proved safe. The anteroventral ANT appeared to be the most efficacious stimulation site. This systematic investigation with reluctant medication changes allowed for the development of a better idea of the association between parameter changes and outcome in ANT DBS patients, but larger samples are still needed to assess the potential of bipolar stimulation and distinct cycling frequencies. Furthermore, more multifaceted and objective assessments of treatment outcome are needed to fully assess the effects of ANT DBS treatment.

Language hemispheric dominance analyzed with magnetic resonance DTI: correlation with the Wada test

J Neurosurg 134:1703–1710, 2021

Language lateralization is a major concern in some patients with pharmacoresistant epilepsy who will face surgery; in these patients, hemispheric dominance testing is essential to avoid further complications. The Wada test is considered the gold standard examination for language localization, but is invasive and requires many human and material resources. Functional MRI and tractography with diffusion tensor imaging (DTI) have demonstrated that they could be useful for locating language in epilepsy surgery, but there is no evidence of the correlation between the Wada test and DTI MRI in language dominance.

METHODS The authors performed a retrospective review of patients who underwent a Wada test before epilepsy surgery at their institution from 2012 to 2017. The authors retrospectively analyzed fractional anisotropy (FA), number and length of fibers, and volume of the arcuate fasciculus and uncinate fasciculus, comparing dominant and nondominant hemispheres.

RESULTS Ten patients with temporal lobe epilepsy were reviewed. Statistical analysis showed that the mean FA of the arcuate fasciculus in the dominant hemisphere was higher than in the nondominant hemisphere (0.369 vs 0.329, p = 0.049). Also, the number of fibers in the arcuate fasciculus was greater in the dominant hemisphere (881.5 vs 305.4, p = 0.003). However, no differences were found in the FA of the uncinate fasciculus or number of fibers between hemispheres. The length of fibers of the uncinate fasciculus was longer in the dominant side (74.4 vs 50.1 mm, p = 0.05). Volume in both bundles was more prominent in the dominant hemisphere (12.12 vs 6.48 cm3, p = 0.004, in the arcuate fasciculus, and 8.41 vs 4.16 cm3, p = 0.018, in the uncinate fasciculus). Finally, these parameters were compared in patients in whom the seizure focus was situated in the dominant hemisphere: FA (0.37 vs 0.30, p = 0.05), number of fibers (114.4 vs 315.6, p = 0.014), and volume (12.58 vs 5.88 cm3, p = 0.035) in the arcuate fasciculus were found to be statistically significantly higher in the dominant hemispheres. Linear discriminant analysis of FA, number of fibers, and volume of the arcuate fasciculus showed a correct discrimination in 80% of patients (p = 0.024).

CONCLUSIONS The analysis of the arcuate fasciculus and other tract bundles by DTI could be a useful tool for language location testing in the preoperative study of patients with refractory epilepsy.

Predictors of early postoperative epileptic seizures after awake surgery in supratentorial diffuse gliomas

J Neurosurg 134:683–692, 2021

Functional-based resection under awake conditions had been associated with a nonnegligible rate of intraoperative and postoperative epileptic seizures. The authors assessed the incidence of intraoperative and early postoperative epileptic seizures after functional-based resection under awake conditions.

METHODS The authors prospectively assessed intraoperative and postoperative seizures (within 1 month) together with clinical, imaging, surgical, histopathological, and follow-up data for 202 consecutive diffuse glioma adult patients who underwent a functional-based resection under awake conditions.

RESULTS Intraoperative seizures occurred in 3.5% of patients during cortical stimulation; all resolved without any procedure being discontinued. No predictor of intraoperative seizures was identified. Early postoperative seizures occurred in 7.9% of patients at a mean of 5.1 ± 2.9 days. They increased the duration of hospital stay (p = 0.018), did not impact the 6-month (median 95 vs 100, p = 0.740) or the 2-year (median 100 vs 100, p = 0.243) postoperative Karnofsky Performance Status score and did not impact the 6-month (100% vs 91.4%, p = 0.252) or the 2-year (91.7 vs 89.4%, p = 0.857) postoperative seizure control. The time to treatment of at least 3 months (adjusted OR [aOR] 4.76 [95% CI 1.38–16.36], p = 0.013), frontal lobe involvement (aOR 4.88 [95% CI 1.25–19.03], p = 0.023), current intensity for intraoperative mapping of at least 3 mA (aOR 4.11 [95% CI 1.17–14.49], p = 0.028), and supratotal resection (aOR 6.24 [95% CI 1.43–27.29], p = 0.015) were independently associated with early postoperative seizures.

CONCLUSIONS Functional-based resection under awake conditions can be safely performed with a very low rate of intraoperative and early postoperative seizures and good 6-month and 2-year postoperative seizure outcomes. Intraoperatively, the use of the lowest current threshold producing reproducible responses is mandatory to reduce seizure occurrence intraoperatively and in the early postoperative period.

Corpus callosotomy performed with laser interstitial thermal therapy

J Neurosurg 134:314–322, 2021

Corpus callosotomy is a palliative procedure that is effective at reducing seizure burden in patients with medically refractory epilepsy. The procedure is traditionally performed via open craniotomy with interhemispheric microdissection to divide the corpus callosum. Concerns for morbidity associated with craniotomy can be a deterrent to patients, families, and referring physicians for surgical treatment of epilepsy. Laser interstitial thermal therapy (LITT) is a less invasive procedure that has been widely adopted in neurosurgery for the treatment of tumors. In this study, the authors investigated LITT as a less invasive approach for corpus callosotomy.

METHODS The authors retrospectively reviewed all patients treated for medically refractory epilepsy by corpus callosotomy, either partial or completion, with LITT. Chart records were analyzed to summarize procedural metrics, length of stay, adverse events, seizure outcomes, and time to follow-up. In select cases, resting-state functional MRI was performed to qualitatively support effective functional disconnection of the cerebral hemispheres.

RESULTS Ten patients underwent 11 LITT procedures. Five patients received an anterior two-thirds LITT callosotomy as their first procedure. One patient returned after LITT partial callosotomy for completion of callosotomy by LITT. The median hospital stay was 2 days (IQR 1.5–3 days), and the mean follow-up time was 1.0 year (range 1 month to 2.86 years). Functional outcomes are similar to those of open callosotomy, with the greatest effect in patients with a significant component of drop attacks in their seizure semiology. One patient achieved an Engel class II outcome after anterior two-thirds callosotomy resulting in only rare seizures at the 18-month follow-up. Four others were in Engel class III and 5 were Engel class IV. Hemorrhage occurred in 1 patient at the time of removal of the laser fiber, which was placed through the bone flap of a prior open partial callosotomy.

CONCLUSIONS LITT appears to be a safe and effective means for performing corpus callosotomy. Additional data are needed to confirm equipoise between open craniotomy and LITT for corpus callosotomy.

Cerebrospinal fluid disturbances after transcallosal surgery: incidence and predictive factors

J Neurosurg 133:979–987, 2020

CSF dynamics after transcallosal resection of intraventricular lesions can be altered, and the need for shunt implantation complicates the management of these patients. Because the pathophysiological mechanism and contributing factors are poorly understood and the incidence has largely not been described, the authors conducted a study to elucidate these factors.

METHODS The authors retrospectively reviewed data from patients who had been operated on at their institution via a transcallosal approach between March 2002 and December 2016. They evaluated the need for a shunt implantation up to 3 months after surgery by assessing clinical variables. These variables were age at surgery, the need for perioperative external CSF drainage, histology of the lesion, and the following radiological parameters: pre- and postoperative Evans index, maximal postoperative extension of subdural effusions (SDEs) measured on axial images, and maximal interhemispheric fissure (IHF) width measured on coronal images assessed at 4 different points in time (preoperatively, day 1, days 2–4, and days 4–8 after surgery). To identify potential risk factors, univariate and multivariate regression models were constructed. Receiver operating characteristic (ROC) curves for significant predictors, as well as the area under the curve (AUC), were calculated.

RESULTS Seventy-four patients (40 female and 34 male) were identified; their median age at surgery was 17.6 years (range 4 months to 76 years). Shunt implantation was necessary in 13 patients (ventriculoperitoneal [VP] shunt, n = 7; subdural peritoneal [SDP] shunt, n = 6) after a median interval of 24 days (range 10 days to 3 months). Univariate logistic regression models revealed a significant effect of IHF width on days 4–8 (OR 1.31, 95% CI 1.03–1.66; p = 0.027), extension of SDE on days 2–4 (OR 1.33, 95% CI 1.11–1 0.60; p = 0.003), and age (OR 0.932, 95% CI 0.88–0.99; p = 0.02). In the multiple regression model, the effect of the independent variable extension of the SDE remained significant. ROC curves for the predictors IHF width on days 4–8 and extension of SDE on days 2–4 revealed an AUC equal to 0.732 and 0.752, respectively. Before shunt implantation, the ventricles were smaller compared to the preoperative size in 9 of the 13 patients (SDP shunt, n = 5; VP shunt, n = 4).

CONCLUSIONS The rate of shunt-dependent hydrocephalus 3 months after surgery in this heterogeneous group of patients was 17.6% (95% CI 9.7%–28.2%). The authors identified as predictive factors the variables extension of the convexity space, IHF 1 week after surgery, and younger age.


Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy for Epilepsy

Neurosurgery 86 (4) E366–E382 2020

For patients with focal drug-resistant epilepsy (DRE), surgical resection of the epileptogenic zone (EZ) may offer seizure freedom and benefits for quality of life. Yet, concerns remain regarding invasiveness, morbidity, and neurocognitive side effects. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has emerged as a less invasive option for stereotactic ablation rather than resection of the EZ.

OBJECTIVE: To provide an introduction to MRgLITT for epilepsy, including historical development, surgical technique, and role in therapy.

METHODS: The development of MRgLITT is briefly recounted. A systematic review identified reported techniques and indication-specific outcomes of MRgLITT for DRE in human studies regardless of sample size or follow-up duration. Potential advantages and disadvantages compared to available alternatives for each indication are assessed in an unstructured review.

RESULTS: Techniques and outcomes are reported for mesial temporal lobe epilepsy, hypothalamic hamartoma, focal cortical dysplasia, nonlesional epilepsy, tuberous sclerosis, periventricular nodular heterotopia, cerebral cavernous malformations, poststroke epilepsy, temporal encephalocele, and corpus callosotomy.

CONCLUSION: MRgLITT offers access to foci virtually anywhere in the brain with minimal disruption of the overlying cortex and white matter, promising fewer neurological side effects and less surgical morbidity and pain. Compared to other ablative techniques, MRgLITT offers immediate, discrete lesions with real-time monitoring of temperature beyond the fiber tip for damage estimates and off-target injury prevention. Applications of MRgLITT for epilepsy are growing rapidly and, although more evidence of safety and efficacy is needed, there are potential advantages for some patients.

The temporoinsular projection system: an anatomical study

J Neurosurg 132:615–623, 2020

Connections between the insular cortex and the amygdaloid complex have been demonstrated using various techniques. Although functionally well connected, the precise anatomical substrate through which the amygdaloid complex and the insula are wired remains unknown. In 1960, Klingler briefly described the “fasciculus amygdaloinsularis,” a white matter tract connecting the posterior insula with the amygdala. The existence of such a fasciculus seems likely but has not been firmly established, and the reported literature does not include a thorough description and documentation of its anatomy. In this fiber dissection study the authors sought to elucidate the pathway connecting the insular cortex and the mesial temporal lobe.

METHODS Fourteen brain specimens obtained at routine autopsy were dissected according to Klingler’s fiber dissection technique. After fixation and freezing, anatomical dissections were performed in a stepwise progressive fashion.

RESULTS The insula is connected with the opercula of the frontal, parietal, and temporal lobes through the extreme capsule, which represents a network of short association fibers. At the limen insulae, white matter fibers from the extreme capsule converge and loop around the uncinate fasciculus toward the temporal pole and the mesial temporal lobe, including the amygdaloid complex.

CONCLUSIONS The insula and the mesial temporal lobe are directly connected through white matter fibers in the extreme capsule, resulting in the appearance of a single amygdaloinsular fasciculus. This apparent fasciculus is part of the broader network of short association fibers of the extreme capsule, which connects the entire insular cortex with the temporal pole and the amygdaloid complex. The authors propose the term “temporoinsular projection system” (TIPS) for this complex.

Role of Biomarkers in Adaptive Modulation of Clinical Brain Stimulation

Neurosurgery, Volume 85, Issue 3, September 2019:  E430–E439

Therapeutic brain stimulation has proven efficacious for treatment of nervous system diseases, exerting widespread influence via disease-specific neural networks. Activation or suppression of neural networks could theoretically be assessed by either clinical symptom modification (ie, tremor, rigidity, seizures) or development of specific biomarkers linked to treatment of symptomatic disease states.

For example, biomarkers indicative of disease state could aid improved intraoperative localization of electrode position, optimize device efficacy or efficiency through dynamic control, and eventually serve to guide automatic adjustment of stimulation settings.

Biomarkers to control either extracranial or intracranial stimulation span from continuous physiological brain activity, intermittent pathological activity, and triggered local phenomena or potentials, to wearable devices, blood flow, biochemical or cardiac signals, temperature perturbations, optical or magnetic resonance imaging changes, or optogenetic signals.

The goal of this review is to update new approaches to implement control of stimulation through relevant biomarkers. Critical questions include whether adaptive systems adjusted through biomarkers can optimize efficiency and eventually efficacy, serve as inputs for stimulation adjustment, and consequently broaden our fundamental understanding of abnormal neural networks in pathologic states.

Neurosurgeons are at the forefront of translating and developing biomarkers embedded within improved brain stimulation systems. Thus, criteria for developing and validating biomarkers for clinical use are important for the adaptation of device approaches into clinical practice.

Cavernous angiomas: deconstructing a neurosurgical disease

J Neurosurg 131:1–13, 2019

Cavernous angioma (CA) is also known as cavernoma, cavernous hemangioma, and cerebral cavernous malformation (CCM) (National Library of Medicine Medical Subject heading unique ID D006392). In its sporadic form, CA occurs as a solitary hemorrhagic vascular lesion or as clustered lesions associated with a developmental venous anomaly. In its autosomal dominant familial form (Online Mendelian Inheritance in Man #116860), CA is caused by a heterozygous germ-line loss-of-function mutation in one of three genes—CCM1/KRIT1, CCM2/Malcavernin, and CCM3/PDCD10—causing multifocal lesions throughout the brain and spinal cord.

In this paper, the authors review the cardinal features of CA’s disease pathology and clinical radiological features. They summarize key aspects of CA’s natural history and broad elements of evidence-based management guidelines, including surgery. The authors also discuss evidence of similar genetic defects in sporadic and familial lesions, consequences of CCM gene loss in different tissues at various stages of development, and implications regarding the pathobiology of CAs.

The concept of CA with symptomatic hemorrhage (CASH) is presented as well as its relevance to clinical care and research in the field. Pathobiological mechanisms related to CA include inflammation and immune-mediated processes, angiogenesis and vascular permeability, microbiome driven factors, and lesional anticoagulant domains. These mechanisms have motivated the development of imaging and plasma biomarkers of relevant disease behavior and promising therapeutic targets.

The spectrum of discoveries about CA and their implications endorse CA as a paradigm for deconstructing a neurosurgical disease.


Stimulation of the Anterior nuclei of Thalamus for Epilepsy

Neurosurgical Review (2019) 42:287–296

Despite the use of first-choice anti-epileptic drugs and satisfactory seizure outcome rates after resective epilepsy surgery, a considerable percentage of patients do not become seizure free. ANT-DBS may provide for an alternative treatment option in these patients. This literature review discusses the rationale, mechanism of action, clinical efficacy, safety, and tolerability of ANT-DBS in drug-resistant epilepsy patients.

A review using systematic methods of the available literature was performed using relevant databases including Medline, Embase, and the Cochrane Library pertaining to the different aspects ANT-DBS. ANTDBS for drug-resistant epilepsy is a safe, effective and well-tolerated therapy, where a special emphasis must be given to monitoring and neuropsychological assessment of both depression and memory function.

Three patterns of seizure control by ANT-DBS are recognized, of which a delayed stimulation effect may account for an improved long-term response rate. ANTDBS remotely modulates neuronal network excitability through overriding pathological electrical activity, decrease neuronal cell loss, through immune response inhibition or modulation of neuronal energy metabolism. ANT-DBS is an efficacious treatment modality, even when curative procedures or lesser invasive neuromodulative techniques failed. When compared to VNS, ANTDBS shows slightly superior treatment response, which urges for direct comparative trials. Based on the available evidence ANTDBS and VNS therapies are currently both superior compared to non-invasive neuromodulation techniques such as t-VNS and rTMS. Additional in-vivo research is necessary in order to gain more insight into the mechanism of action of ANT-DBS in localization-related epilepsy which will allow for treatment optimization.

Randomized clinical studies in search of the optimal target in well-defined epilepsy patient populations, will ultimately allow for optimal patient stratification when applying DBS for drug-resistant patients with epilepsy.

A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface

J Neurosurg 130:1166–1179, 2019

Wireless technology is a novel tool for the transmission of cortical signals. Wireless electrocorticography (ECoG) aims to improve the safety and diagnostic gain of procedures requiring invasive localization of seizure foci and also to provide long-term recording of brain activity for brain-computer interfaces (BCIs). However, no wireless devices aimed at these clinical applications are currently available. The authors present the application of a fully implantable and externally rechargeable neural prosthesis providing wireless ECoG recording and direct cortical stimulation (DCS). Prolonged wireless ECoG monitoring was tested in nonhuman primates by using a custom-made device (the ECoG im- plantable wireless 16-electrode [ECOGIW-16E] device) containing a 16-contact subdural grid. This is a preliminary step toward large-scale, long-term wireless ECoG recording in humans.

METHODS The authors implanted the ECOGIW-16E device over the left sensorimotor cortex of a nonhuman primate (Macaca fascicularis), recording ECoG signals over a time span of 6 months. Daily electrode impedances were mea- sured, aiming to maintain the impedance values below a threshold of 100 KW. Brain mapping was obtained through wireless cortical stimulation at fixed intervals (1, 3, and 6 months). After 6 months, the device was removed. The authors analyzed cortical tissues by using conventional histological and immunohistological investigation to assess whether there was evidence of damage after the long-term implantation of the grid.

RESULTS The implant was well tolerated; no neurological or behavioral consequences were reported in the monkey, which resumed his normal activities within a few hours of the procedure. The signal quality of wireless ECoG remained excellent over the 6-month observation period. Impedance values remained well below the threshold value; the average impedance per contact remains approximately 40 KW. Wireless cortical stimulation induced movements of the upper and lower limbs, and elicited fine movements of the digits as well. After the monkey was euthanized, the grid was found to be encapsulated by a newly formed dural sheet. The grid removal was performed easily, and no direct adhesions of the grid to the cortex were found. Conventional histological studies showed no cortical damage in the brain region covered by
the grid, except for a single microscopic spot of cortical necrosis (not visible to the naked eye) in a region that had under- gone repeated procedures of electrical stimulation. Immunohistological studies of the cortex underlying the grid showed
a mild inflammatory process.

CONCLUSIONS This preliminary experience in a nonhuman primate shows that a wireless neuroprosthesis, with related long-term ECoG recording (up to 6 months) and multiple DCSs, was tolerated without sequelae. The authors predict that epilepsy surgery could realize great benefit from this novel prosthesis, providing an extended time span for ECoG recording.

Brain invasion and the risk of seizures in patients with meningioma

J Neurosurg 130:789–796, 2019

Identification of risk factors for perioperative epilepsy remains crucial in the care of patients with meningioma. Moreover, associations of brain invasion with clinical and radiological variables have been largely unexplored. The authors hypothesized that invasion of the cortex and subsequent increased edema facilitate seizures, and they compared radiological data and perioperative seizures in patients with brain-invasive or noninvasive meningioma.

METHODS Correlations of brain invasion with tumor and edema volumes and preoperative and postoperative seizures were analyzed in univariate and multivariate analyses.

RESULTS Totals of 108 (61%) females and 68 (39%) males with a median age of 60 years and harboring totals of 92 (52%) grade I, 79 (45%) grade II, and 5 (3%) grade III tumors were included. Brain invasion was found in 38 (22%) patients and was absent in 138 (78%) patients. The tumors were located at the convexity in 72 (41%) patients, at the falx cerebri in 26 (15%), at the skull base in 69 (39%), in the posterior fossa in 7 (4%), and in the ventricle in 2 (1%); the median tumor and edema volumes were 13.73 cm3 (range 0.81–162.22 cm3) and 1.38 cm3 (range 0.00–355.80 cm3), respectively. As expected, edema volume increased with rising tumor volume (p < 0.001). Brain invasion was independent of tumor volume (p = 0.176) but strongly correlated with edema volume (p < 0.001). The mean edema volume in noninvasive tumors was 33.0 cm3, but in invasive tumors, it was 130.7 cm3 (p = 0.008). The frequency of preoperative seizures was independent of the patients’ age, sex, and tumor location; however, the frequency was 32% (n = 12) in patients with invasive meningioma and 15% (n = 21) in those with noninvasive meningioma (p = 0.033). In contrast, the probability of detecting brain invasion microscopically was increased more than 2-fold in patients with a history of preoperative seizures (OR 2.57, 95% CI 1.13–5.88; p = 0.025). In univariate analyses, the rate of preoperative seizures correlated slightly with tumor volume (p = 0.049) but strongly with edema volume (p = 0.014), whereas seizure semiology was found to be independent of brain invasion (p = 0.211). In multivariate analyses adjusted for age, sex, tumor location, tumor and edema volumes, and WHO grade, rising tumor volume (OR 1.02, 95% CI 1.00–1.03; p = 0.042) and especially brain invasion (OR 5.26, 95% CI 1.52–18.15; p = 0.009) were identified as independent predictors of preoperative seizures. Nine (5%) patients developed new seizures within a median follow-up time of 15 months after surgery. Development of postoperative epilepsy was independent of all clinical variables, including Simpson grade (p = 0.133), tumor location (p = 0.936), brain invasion (p = 0.408), and preoperative edema volume (p = 0.081), but was correlated with increasing preoperative tumor volume (p = 0.004). Postoperative seizure-free rates were similar among patients with invasive and those with noninvasive meningioma (p = 0.372).

CONCLUSIONS Brain invasion was identified as a new and strong predictor for preoperative, but not postoperative, seizures. Although also associated with increased peritumoral edema, seizures in patients with invasive meningioma might be facilitated substantially by cortical invasion itself. Consideration of seizures in consultations between the neurosurgeon and neuropathologist can improve the microscopic detection of brain invasion.


Smartphone-assisted minimally invasive neurosurgery


J Neurosurg 130:90–98, 2019

Advances in video and fiber optics since the 1990s have led to the development of several commercially available high-definition neuroendoscopes. This technological improvement, however, has been surpassed by the smartphone revolution. With the increasing integration of smartphone technology into medical care, the introduction of these high-quality computerized communication devices with built-in digital cameras offers new possibilities in neuroendoscopy. The aim of this study was to investigate the usefulness of smartphone-endoscope integration in performing different types of minimally invasive neurosurgery.

METHODS The authors present a new surgical tool that integrates a smartphone with an endoscope by use of a specially designed adapter, thus eliminating the need for the video system customarily used for endoscopy. The authors used this novel combined system to perform minimally invasive surgery on patients with various neuropathological disorders, including cavernomas, cerebral aneurysms, hydrocephalus, subdural hematomas, contusional hematomas, and spontaneous intracerebral hematomas.

RESULTS The new endoscopic system featuring smartphone-endoscope integration was used by the authors in the minimally invasive surgical treatment of 42 patients. All procedures were successfully performed, and no complications related to the use of the new method were observed. The quality of the images obtained with the smartphone was high enough to provide adequate information to the neurosurgeons, as smartphone cameras can record images in high definition or 4K resolution. Moreover, because the smartphone screen moves along with the endoscope, surgical mobility was enhanced with the use of this method, facilitating more intuitive use. In fact, this increased mobility was identified as the greatest benefit of the use of the smartphone-endoscope system compared with the use of the neuroendoscope with the standard video set.

CONCLUSIONS Minimally invasive approaches are the new frontier in neurosurgery, and technological innovation and integration are crucial to ongoing progress in the application of these techniques. The use of smartphones with endoscopes is a safe and efficient new method of performing endoscope-assisted neurosurgery that may increase surgeon mobility and reduce equipment costs.