Long-Term Outcomes of Bilateral Subthalamic Nucleus Deep Brain Stimulation for Patients With Parkinson’s Disease: 10 Years and Beyond

Neurosurgery 91:726–733, 2022

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) represents an effective treatment for severe Parkinson’s disease (PD), but little is known about the long-term benefit.

OBJECTIVE: To investigate the survival rate and long-term outcome of DBS.

METHODS: We investigated all 81 patients including 37 males and 44 females who underwent bilateral STN DBS from March 2005 to March 2008 at a single institution. The current survival status of the patients was investigated. Preoperative and postoperative follow-up assessments were analyzed.

RESULTS: The mean age at the time of surgery was 62 (range 27-82) years, and the median clinical follow-up duration was 145 months. Thirty-five patients (43%) died during the follow-up period. The mean duration from DBS surgery to death was 110.46 ± 40.8 (range 0-155) months. The cumulative survival rate is as follows: 98.8 ± 1.2% (1 year), 95.1 ± 2.4% (5 years), and 79.0 ± 4.5% (10 years). Of the 81 patients, 33 (40%) were ambulatory up to more than 11 years. The Unified Parkinson’s Disease Rating Scale (UPDRS) score was significantly improved until 5 years after surgery although it showed a tendency to increase again after 10 years. The patient group with both electrodes located within the STN showed a higher rate of survival and maintained ambulation.

CONCLUSION: STN DBS is a safe and effective treatment for patients with advanced PD. This study based on the long-term follow-up of large patient populations can be used to elucidate the long-term fate of patients who underwent bilateral STN DBS for PD.

Tractography-Based Surgical Targeting for Thalamic Deep Brain Stimulation: A Comparison of Probabilistic vs Deterministic Fiber Tracking of the Dentato-Rubro-Thalamic Tract

Neurosurgery 90:419–425, 2022

The ventral intermediate (VIM) thalamic nucleus is the main target for the surgical treatment of refractory tremor. Initial targeting traditionally relies on atlas-based stereotactic targeting formulas, which only minimally account for individual anatomy. Al- ternative approaches have been proposed, including direct targeting of the dentato-rubro- thalamic tract (DRTT), which, in clinical settings, is generally reconstructed with deterministic tracking. Whether more advanced probabilistic techniques are feasible on clinical-grade magnetic resonance acquisitions and lead to enhanced reconstructions is poorly understood.

OBJECTIVE: To compare DRTT reconstructed with deterministic vs probabilistic tracking. METHODS: Thisisaretrospectivestudyof19patientswithessentialtremorwhounderwentdeep brain stimulation (DBS) with intraoperative neurophysiology and stimulation testing. We assessed the proximity of the DRTT to the DBS lead and to the active contact chosen based on clinical response.

RESULTS: In the commissural plane, the deterministic DRTT was anterior (P<104)and  < 104) to the DBS lead. By contrast, although the probabilistic DRTT was also anterior to the lead (P < 104), there was no difference in the mediolateral dimension (P = .5). Moreover, the 3- dimensional Euclidean distance from the active contact to the probabilistic DRTT was smaller vs the distance to the deterministic DRTT (3.32 ± 1.70 mm vs 5.01 ± 2.12 mm; P < 104).

CONCLUSION: DRTT reconstructed with probabilistic fiber tracking was superior in spatial proximity to the physiology-guided DBS lead and to the empirically chosen active contact. These data inform strategies for surgical targeting of the VIM.

Direct targeting of the ventral intermediate nucleus of the thalamus in deep brain stimulation for essential tremor

J Neurosurg 136:662–671, 2022

The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation (DBS) to control symptoms related to essential tremor. The VIM is typically targeted using indirect methods, although studies have reported visualization of the VIM on proton density–weighted MRI. This study compares the outcomes between patients who underwent VIM DBS with direct and indirect targeting.

METHODS Between August 2013 and December 2019, 230 patients underwent VIM DBS at the senior author’s institution. Of these patients, 92 had direct targeting (direct visualization on proton density 3-T MRI). The remaining 138 patients had indirect targeting (relative to the third ventricle and anterior commissure–posterior commissure line).

RESULTS Coordinates of electrodes placed with direct targeting were significantly more lateral (p < 0.001) and anterior (p < 0.001) than those placed with indirect targeting. The optimal stimulation amplitude for devices measured in voltage was lower for those who underwent direct targeting than for those who underwent indirect targeting (p < 0.001). Patients undergoing direct targeting had a greater improvement only in their Quality of Life in Essential Tremor Questionnaire hobby score versus those undergoing indirect targeting (p = 0.04). The direct targeting group had substantially more symptomatic hemorrhages than the indirect targeting group (p = 0.04). All patients who experienced a postoperative hemorrhage after DBS recovered without intervention.

CONCLUSIONS Patients who underwent direct VIM targeting for DBS treatment of essential tremor had similar clinical outcomes to those who underwent indirect targeting. Direct VIM targeting is safe and effective.

Perioperative complications of deep brain stimulation among patients with advanced age

J Neurosurg 135:1421–1428, 2021

Deep brain stimulation (DBS) is an elective procedure that can dramatically enhance quality of life. Because DBS is not considered lifesaving, it is important that providers produce consistently good outcomes, and one factor they usually consider is patient age. While older age may be a relative contraindication for some elective surgeries, the progressive nature of movement disorders treated with DBS may suggest that older patients stand to benefit substantially from surgery. To better understand the risks of treating patients of advanced age with DBS, this study compares perioperative complication rates in patients ≥ 75 to those < 75 years old.

METHODS Patients undergoing DBS surgery for various indications by a single surgeon (May 2013–July 2019) were stratified into elderly (age ≥ 75 years) and younger (age < 75 years) cohorts. The risks of common perioperative complications and various outcome measures were compared between the two age groups using risk ratios (RRs) and 95% confidence intervals (CIs).

RESULTS A total of 861 patients were available for analysis: 179 (21%) were ≥ 75 years old and 682 (79%) were < 75 years old (p < 0.001). Patients ≥ 75 years old, compared with those < 75 years old, did not have significantly different RRs (95% CIs) of seizure (RR 0.4, 95% CI 0.1–3.3), cerebrovascular accident (RR 1.9, 95% CI 0.4–10.3), readmission within 90 days of discharge (RR 1.22, 95% CI 0.8–1.8), explantation due to infection (RR 2.5, 95% CI 0.4–15.1), or surgical revision (for lead, RR 2.5, 95% CI 0.4–15.1; for internal pulse generator, RR 3.8, 95% CI 0.2–61.7). Although the risk of postoperative intracranial bleeding was higher in the elderly group (6.1%) than in the younger group (3.1%), this difference was not statistically significant (p = 0.06). However, patients ≥ 75 years old did have significantly increased risk of altered mental status (RR 2.5, 95% CI 1.6–4.0), experiencing more than a 1-night stay (RR 1.7, 95% CI 1.4–2.0), and urinary retention (RR 2.3, 95% CI 1.2–4.2; p = 0.009).

CONCLUSIONS Although elderly patients had higher risks of certain outcome measures than younger patients, this study showed that elderly patients undergoing DBS for movement disorders did not have an increased risk of more serious complications, such as intracranial hemorrhage, infection, or readmission. Advanced age alone should not be considered a contraindication for DBS.

Fields of Forel Brain Stimulation Improves Levodopa-Unresponsive Gait and Balance Disorders in Parkinson’s Disease

Neurosurgery 89:450–459, 2021

Gait and balance disturbance are challenging symptoms in advanced Parkinson’s disease (PD). Anatomic and clinical data suggest that the fields of Forel may be a potential surgical target to treat these symptoms.

OBJECTIVE: To test whether bilateral stimulation centered at the fields of Forel improves levodopa unresponsive freezing of gait (FOG), balance problems, postural instability, and falls in PD.

METHODS: A total of 13 patients with levodopa-unresponsive gait disturbance (Hoehn and Yahr stage ≥3) were included. Patients were evaluated before (on-medication condition) and 1 yr after surgery (on-medication-on-stimulation condition). Motor symptoms and quality of life were assessed with the Unified Parkinson’s Disease Rating scale (UPDRS III) and Quality of Life scale (PDQ-39). Clinical and instrumented analyses assessed gait, balance, postural instability, and falls.

RESULTS: Surgery improved balance by 43% (95% confidence interval [CI]: 21.2-36.4 to 35.2-47.1; P = .0012), reduced FOG by 35% (95% CI: 15.1-20.3 to 8.1-15.3; P = .0021), and the monthly number of falls by 82.2% (95% CI: 2.2-6.9 to −0.2-1.7; P = .0039). Anticipatory postural adjustments, velocity to turn, and postural sway measurements also improved 1 yr after deep brain stimulation (DBS). UPDRS III motor scores were reduced by 27.2% postoperatively (95% CI: 42.6-54.3 to 30.2-40.5; P < .0001). Quality of life improved 27.5% (95% CI: 34.6-48.8 to 22.4-37.9; P = .0100).

CONCLUSION: Our results suggest that DBS of the fields of Forel improved motor symptoms in PD, as well as the FOG, falls, balance, postural instability, and quality of life.

A Novel Framework for Network-Targeted Neuropsychiatric Deep Brain Stimulation

Neurosurgery 89:E116–E121, 2021

Deep brain stimulation (DBS) has emerged as a promising therapy for neuropsychiatric illnesses, including depression and obsessive-compulsive disorder, but has shown inconsistent results in prior clinical trials. We propose a shift away from the empirical paradigm for developing new DBS applications, traditionally based on testing brain targets with conventional stimulation paradigms. Instead, we propose a multimodal approach centered on an individualized intracranial investigation adapted from the epilepsy monitoring experience, which integrates comprehensive behavioral assessment, such as the Research Domain Criteria proposed by the National Institutes of Mental Health. In this paradigm-shifting approach, we combine readouts obtained from neurophysiology, behavioral assessments, and self-report during broad exploration of stimulation parameters and behavioral tasks to inform the selection of ideal DBS parameters. Such an approach not only provides a foundational understanding of dysfunctional circuits underlying symptom domains in neuropsychiatric conditions but also aims to identify generalizable principles that can ultimately enable individualization and optimization of therapy without intracranial monitoring.

Neurostimulation for treatment-resistant posttraumatic stress disorder

J Neurosurg 134:1715–1723, 2021

Posttraumatic stress disorder (PTSD) is a widespread and often devastating psychiatric condition. Core symptoms include intrusive and distressing thoughts, heightened reactivity, mood changes, cognitive impairments, and consequent avoidance of trauma-related stimuli. Symptoms of PTSD are often refractory to standard treatments, and neuromodulatory techniques have therefore drawn significant interest among the most treatment-resistant patients.

Transcranial magnetic stimulation has demonstrated minimal efficacy, and deep brain stimulation trials are currently ongoing.

PTSD is a disorder of neural circuitry; the current understanding includes involvement of the amygdala (basolateral and central nuclei), the prefrontal cortex (ventral medial and dorsolateral regions), and the hippocampus. Neuroimaging and optogenetic studies have improved the understanding of large-scale neural networks and the effects of microcircuitry manipulation, respectively.

This review discusses the current PTSD literature and ongoing neurostimulation trials, and it highlights the current understanding of neuronal circuit dysfunction in PTSD. The authors emphasize the anatomical correlations of PTSD’s hallmark symptoms, offer another potential deep brain stimulation target for PTSD, and note the need for continued research to identify useful biomarkers for the development of closed-loop therapies. Although there is hope that neuromodulation will become a viable treatment modality for PTSD, this concept remains theoretical, and further research should involve institutional review board–approved controlled prospective clinical studies.


Electrocorticography During Deep Brain Stimulation Surgery

Neurosurgery 88:E420–E426, 2021

Intraoperative research during deep brain stimulation (DBS) surgery has enabled major advances in understanding movement disorders pathophysiology and potential mechanisms for therapeutic benefit. In particular, over the last decade, recording electrocorticography (ECoG) from the cortical surface, simultaneously with subcortical recordings, has become an important research tool for assessing basal gangliathalamocortical circuit physiology.

OBJECTIVE: To provide confirmation of the safety of performing ECoG duringDBS surgery, using data fromcenters involved in 2 BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative-funded basic human neuroscience projects. METHODS: Datawere collected separately at 4 centers. The primary endpoint was complication rate, defined as any intraoperative event, infection, or postoperative magnetic resonance imaging abnormality requiring clinical follow-up. Complication rates for explanatory variables were compared using point biserial correlations and Fisher exact tests.

RESULTS: A total of 367 DBS surgeries involving ECoG were reviewed. No cortical hemorrhages were observed. Seven complications occurred: 4 intraparenchymal hemorrhages and 3 infections (complication rate of 1.91%; CI=0.77%-3.89%). The placement of 2 separate ECoG research electrodes through a single burr hole (84 cases) did not result in a significantly different rate of complications, compared to placement of a single electrode (3.6% vs 1.5%; P = .4). Research data were obtained successfully in 350 surgeries (95.4%).

CONCLUSION: Combined with the single report previously available, which described no ECoG-related complications in a single-center cohort of 200 cases, these findings suggest that research ECOG during DBS surgery did not significantly alter complication rates.

Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines for Deep Brain Stimulations for Obsessive-Compulsive Disorder: Update of the 2014 Guidelines

 Neurosurgery 88:710–712, 2021

In 2020, the Guidelines Task Force conducted another systematic review of the relevant literature on deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) to update the original 2014 guidelines to ensure timeliness and accuracy for clinical practice.

OBJECTIVE: To conduct a systematic review of the literature and update the evidencebased guidelines on DBS for OCD.

METHODS: The Guidelines Task Force conducted another systematic review of the relevant literature, using the same search terms and strategies as used to search PubMed and Embase for relevant literature. The updated search included studies published between 1966 and December 2019. The same inclusion/exclusion criteria as the original guideline were also applied. Abstracts were reviewed and relevant full-text articles were retrieved and graded. Of 864 articles, 10 were retrieved for full-text review and analysis. Recommendations were updated according to new evidence yielded by this update.

RESULTS: Seven studies were included in the original guideline, reporting the use of bilateral DBS as more effective in improving OCD symptoms than sham treatment. An additional 10 studies were included in this update: 1 class II and 9 class III.

CONCLUSION: Based on the data published in the literature, the following recommendations can be made: (1) It is recommended that clinicians utilize bilateral subthalamic nucleus DBS over best medical management for the treatment of patients with medically refractory OCD (level I). (2) Cliniciansmay use bilateral nucleus accumbens or bed nucleus of stria terminalis DBS for the treatment of patientswithmedically refractory OCD (level II). There is insufficient evidence to make a recommendation for the identification of themost effective target. The full guidelines can be accessed at https://www.cns.org/guidelines/browse-guidelinesdetail/ deep-brain-stimulation-obsessive-compulsive-disord.

Deep brain stimulation for aggressiveness: long-term follow-up and tractography study of the stimulated brain areas

J Neurosurg 134:366–375, 2021

Initial studies applying deep brain stimulation (DBS) of the posteromedial hypothalamus (PMH) to patients with pathological aggressiveness have yielded encouraging results. However, the anatomical structures involved in its therapeutic effect have not been precisely identified. The authors’ objective was to describe the long-term outcome in their 7-patient series, and the tractography analysis of the volumes of tissue activated in 2 of the responders.

METHODS This was a retrospective study of 7 subjects with pathological aggressiveness. The findings on MRI with diffusion tensor imaging (DTI) in 2 of the responders were analyzed. The authors generated volumes of tissue activated according to the parameters used, and selected those volumes as regions of interest to delineate the tracts affected by stimulation.

RESULTS The series consisted of 5 men and 2 women. Of the 7 patients, 5 significantly improved with stimulation. The PMH, ventral tegmental area, dorsal longitudinal fasciculus, and medial forebrain bundle seem to be involved in the stimulation field.

CONCLUSIONS In this series, 5 of 7 medication-resistant patients with severe aggressiveness who were treated with bilateral PMH DBS showed a significant long-lasting improvement. The PMH, ventral tegmental area, dorsal longitudinal fasciculus, and medial forebrain bundle seem to be in the stimulation field and might be responsible for the therapeutic effect of DBS.


The accuracy of 3D fluoroscopy (XT) vs computed tomography (CT) registration in deep brain stimulation (DBS) surgery

Acta Neurochirurgica (2020) 162:1871–1878

Stereotactic registration is the most critical step ensuring accuracy in deep brain stimulation (DBS) surgery. 3D fluoroscopy (XT) is emerging as an alternative to CT. XT has been shown to be safe and effective for intraoperative confirmation of lead position following implantation. However, there is a lack of studies evaluating the suitability ofXT to be used for themore crucial step of registration and its capability of being merged to a preoperative MRI. This is the first study comparing accuracy, efficiency, and radiation exposure of XT- vs CT-based stereotactic registration and XT/MRI merging in deep brain stimulation.

Methods Mean absolute differences and Euclidean distance between planned (adjusted for intraoperative testing) and actual lead trajectories were calculated for accuracy of implantation. The radiation dose from each scan was recorded as the dose length product (DLP). Efficiency was measured as the time between the patient entering the operating room and the initial skin incision. A one-way ANOVA compared these parameters between patients that had either CT- or XT-based registration.

Results Forty-one patients underwent DBS surgery—25 in the CT group and 16 in the XT group. The mean absolute difference between CT and XTwas not statistically significant in the x (p = 0.331), y (p = 0.951), or z (p = 0.807) directions. The Euclidean distance between patient groups did not differ significantly (p = 0.874). The average radiation exposure with XT (220.0 ± 0.1 mGy*cm) was significantly lower than CT (1269.3 ± 112.9 mGy*cm) (p < 0.001). There was no significant difference in registration time between CT (107.8 ± 23.1 min) and XT (106.0 ± 18.2 min) (p = 0.518).

Conclusion XT-based frame registration was shown to result in similar implantation accuracy and significantly less radiation exposure compared with CT. Our results surprisingly showed no significant difference in registration time, but this may be due to a learning curve effect.

Postmortem Dissections of Common Targets for Lesion and Deep Brain Stimulation Surgeries

Neurosurgery 86:860–872, 2020

The subthalamic nucleus (STN), globus pallidus internus (GPi), and pedunculopontine nucleus (PPN) are effective targets for deep brain stimulation (DBS) in many pathological conditions. Previous literature has focused on appropriate stimulation targets and their relationships with functional neuroanatomic pathways; however, comprehensive anatomic dissections illustrating these nuclei and their connections are lacking. This information will provide insight into the anatomic basis of stimulation-induced DBS benefits and side effects.

OBJECTIVE: To combine advanced cadaveric dissection techniques and ultrahigh field magnetic resonance imaging (MRI) to explore the anatomy of the STN, GPi, and PPN with their associated fiber pathways.

METHODS: A total of 10 cadaveric human brains and 2 hemispheres of a cadaveric head were examined using fiber dissection techniques. The anatomic dissections were compared with 11.1 Tesla (T) structural MRI and 4.7 T MRI fiber tractography.

RESULTS: The extensive connections of the STN (caudate nucleus, putamen, medial frontal cortex, substantia innominata, substantia nigra, PPN, globus pallidus externus (GPe), GPi, olfactory tubercle, hypothalamus, and mammillary body) were demonstrated. The connections of GPi to the thalamus, substantia nigra, STN, amygdala, putamen, PPN, and GPe were also illustrated. The PPN was shown to connect to the STN and GPi anteriorly, to the cerebellum inferiorly, and to the substantia nigra anteriorly and superiorly.

CONCLUSION: This study demonstrates connections using combined anatomic microdissections, ultrahigh field MRI, and MRI tractography. The anatomic findings are analyzed in relation to various stimulation-induced clinical effects. Precise knowledge of neuroanatomy, anatomic relationships, and fiber connections of the STN, GPi, PPN will likely enable more effective targeting and improved DBS outcomes.

Tractography-Guided Deep Brain Stimulation of the Anteromedial Globus Pallidus Internus for Refractory Obsessive-Compulsive Disorder

Neurosurgery 86:E558–E563, 2020

Obsessive-compulsive disorder (OCD) is a disabling psychiatric disorder, mainly treated with psychotherapy and pharmacotherapy. Surgical intervention may be appropriate for patients with treatment-refractory OCD. Deep brain stimulation (DBS) is an alternative for previously common ablative surgical procedures. Tractography has been proposed as a method for individualizing DBS treatment and may have the potential to improve efficacy.

CLINICAL PRESENTATION: We present a patient with treatment-refractory OCD previously treated with bilateral leucotomies, who underwent DBS surgery with targeting informed by tractography. Preoperative tractography to identify suitable DBS targets was undertaken. Structural images were also utilized for standard stereotactic surgical planning. The anteromedial globus pallidus internus (amGPi) was chosen as the target bilaterally after consideration of white matter projections to frontal cortical regions and neurosurgical approach. Bilateral amGPi DBS surgery was undertaken without adverse events. At 16-mo follow-up, there was a 48.5% reduction in OCD symptom severity as measured by the Yale-Brown Obsessive Compulsive Scale.

CONCLUSION: The amGPi can be a successful DBS target for OCD. This is the first known case to report on DBS surgery postleucotomies for OCD and highlights the utility of tractography for surgical planning in OCD.


The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin

Acta Neurochirurgica (2020) 162: 1053–1066

Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance.

Methods A total of 36 patients were enrolled (essential tremor (17), Parkinson’s tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1Wand T2W sequences. The DRTwas individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio).

Results Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis.

Discussion Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.

The striking effects of deep cerebellar stimulation on generalized fixed dystonia

J Neurosurg 132:712–716, 2020

Cerebellar neuromodulation could influence the pathological abnormalities of movement disorders through several connections between the cerebellum and the basal ganglia or other cortices. In the present report, the authors demonstrate the effects of cerebellar deep brain stimulation (DBS) on a patient with severe generalized fixed dystonia (FD) that was refractory to bilateral pallidotomy and intrathecal baclofen therapy.

A previously healthy 16-year-old girl presented with generalized FD. Bilateral pallidotomy and intrathecal baclofen therapy had failed to resolve her condition, following which she received DBS through the bilateral superior cerebellar peduncle (SCP) and dentate nucleus (DN). Ipsilateral stimulation of the SCP or DN improved the FD, and the ability of DBS administered via the SCP to relax muscles was better than that of DN DBS.

A considerable improvement of generalized FD, from a bedridden state to a wheelchairbound state, was observed in the patient following 6 months of chronic bilateral DBS via the SCP; moreover, the patient was able to move her arms and legs. The findings in the present case suggest that neuromodulation of deep cerebellar structures is a promising treatment for FD that is refractory to conventional treatments.

Deep brain stimulation of the globus pallidus internus versus the subthalamic nucleus in isolated dystonia

J Neurosurg 132:721–732, 2020

Surgical procedures involving deep brain stimulation (DBS) of the globus pallidus internus (GPi) or subthalamic nucleus (STN) are well-established treatments for isolated dystonia. However, selection of the best stimulation target remains a matter of debate. The authors’ objective was to compare the effectiveness of DBS of the GPi and the STN in patients with isolated dystonia.

METHODS In this matched retrospective cohort study, the authors searched an institutional database for data on all patients with isolated dystonia who had undergone bilateral implantation of DBS electrodes in either the GPi or STN in the period from January 30, 2014, to June 30, 2017. Standardized assessments of dystonia and health-related quality of life using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and SF-36 were conducted before and at 1, 6, and 12 months after surgery. No patients were lost to the 6-month follow-up; 5 patients were lost to the 12-month follow-up.

RESULTS Both GPi (14 patients) and STN (16 patients) stimulation produced significant improvement in dystonia and quality of life in all 30 patients found in the database search. At the 1-month follow-up, however, the percentage improvement in the BFMDRS total movement score was significantly (p = 0.01) larger after STN DBS (64%) than after GPi DBS (48%). At the 12-month follow-up, the percentage improvement in the axis subscore was significantly (p = 0.03) larger after GPi DBS (93%) than after STN DBS (83%). Also, the total amount of electrical energy delivered was significantly (p = 0.008) lower with STN DBS than with GPi DBS (124 ± 52 vs 192 ± 65 mJ, respectively).

CONCLUSIONS The GPi and STN are both effective targets in alleviating dystonia and improving quality of life. However, GPi stimulation may be better for patients with axial symptoms. Moreover, STN stimulation may produce a larger clinical response within 1 month after surgery and may have a potential economic advantage in terms of lower battery consumption.

3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences

J Neurosurg 132:586–594, 2020

Physicians are more frequently encountering patients who are treated with deep brain stimulation (DBS), yet many MRI centers do not routinely perform MRI in this population. This warrants a safety assessment to improve DBS patients’ accessibility to MRI, thereby improving their care while simultaneously providing a new tool for neuromodulation research.

METHODS A phantom simulating a patient with a DBS neuromodulation device (DBS lead model 3387 and IPG Activa PC model 37601) was constructed and used. Temperature changes at the most ventral DBS electrode contacts, implantable pulse generator (IPG) voltages, specific absorption rate (SAR), and B1+rms were recorded during 3-T MRI scanning. Safety data were acquired with a transmit body multi-array receive and quadrature transmit-receive head coil during various pulse sequences, using numerous DBS configurations from “the worst” to “the most common.” In addition, 3-T MRI scanning (T1 and fMRI) was performed on 41 patients with fully internalized and active DBS using a quadrature transmit-receive head coil. MR images, neurological examination findings, and stability of the IPG impedances were assessed.

RESULTS In the phantom study, temperature rises at the DBS electrodes were less than 2°C for both coils during 3D SPGR, EPI, DTI, and SWI. Sequences with intense radiofrequency pulses such as T2-weighted sequences may cause higher heating (due to their higher SAR). The IPG did not power off and kept a constant firing rate, and its average voltage output was unchanged. The 41 DBS patients underwent 3-T MRI with no adverse event.

CONCLUSIONS Under the experimental conditions used in this study, 3-T MRI scanning of DBS patients with selected pulse sequences appears to be safe. Generally, T2-weighted sequences (using routine protocols) should be avoided in DBS patients. Complementary 3-T MRI phantom safety data suggest that imaging conditions that are less restrictive than those used in the patients in this study, such as using transmit body multi-array receive coils, may also be safe. Given the interplay between the implanted DBS neuromodulation device and the MRI system, these findings are specific to the experimental conditions in this study.


Somatosensory functional MRI tractography for individualized targeting of deep brain stimulation in patients with chronic pain after brachial plexus injury

Acta Neurochirurgica (2019) 161:2485–2490

The optimal targets for deep brain stimulation (DBS) in patients with refractory chronic pain are not clearly defined. We applied sensory functional MRI (fMRI)- and diffusion tensor imaging (DTI)-based DBS in chronic pain patients into 3 different targets to ascertain the most beneficial individual stimulation site.

Methods Three patients with incapacitating chronic pain underwent DBS into 3 targets (periventricular gray (PVG), ventroposterolateral thalamus (VPL), and posterior limb of the internal capsule according to fMRI and DTI (PLIC). The electrodes were externalized and double-blinded tested for several days. Finally, the two electrodes with the best pain reduction were kept for permanent stimulation. The patients were then followed up for 12 months. Outcome measures comprised the numerical rating scale (NRS), short-form McGill’s score (SF-MPQ), and health-related quality of life (SF-36).

Results Continuous pain (mean NRS 6.6) was reduced to NRS 3.6 after 12 months. Only with stimulation of the PLIC pain attacks, that occurred at least 3 times a week (mean NRS 9.6) resolved in 2 patients and improved in one patient concerning both intensity (NRS 5) and frequency (twice a month). The mean SF-MPQ decreased from 92.7 to 50. The health-related quality of life improved considerably.

Conclusion fMRI- and DTI-based DBS to the PLIC was the only target with a significant effect on pain attacks and seems to be the most promising target in chronic pain patients after brachial plexus injury. The combination with PVG or VPL can further improve patients’ outcome especially in terms of reducing the continuous pain.

Role of Biomarkers in Adaptive Modulation of Clinical Brain Stimulation

Neurosurgery, Volume 85, Issue 3, September 2019:  E430–E439

Therapeutic brain stimulation has proven efficacious for treatment of nervous system diseases, exerting widespread influence via disease-specific neural networks. Activation or suppression of neural networks could theoretically be assessed by either clinical symptom modification (ie, tremor, rigidity, seizures) or development of specific biomarkers linked to treatment of symptomatic disease states.

For example, biomarkers indicative of disease state could aid improved intraoperative localization of electrode position, optimize device efficacy or efficiency through dynamic control, and eventually serve to guide automatic adjustment of stimulation settings.

Biomarkers to control either extracranial or intracranial stimulation span from continuous physiological brain activity, intermittent pathological activity, and triggered local phenomena or potentials, to wearable devices, blood flow, biochemical or cardiac signals, temperature perturbations, optical or magnetic resonance imaging changes, or optogenetic signals.

The goal of this review is to update new approaches to implement control of stimulation through relevant biomarkers. Critical questions include whether adaptive systems adjusted through biomarkers can optimize efficiency and eventually efficacy, serve as inputs for stimulation adjustment, and consequently broaden our fundamental understanding of abnormal neural networks in pathologic states.

Neurosurgeons are at the forefront of translating and developing biomarkers embedded within improved brain stimulation systems. Thus, criteria for developing and validating biomarkers for clinical use are important for the adaptation of device approaches into clinical practice.

Machine learning—aided personalized DTI tractographic planning for deep brain stimulation of the superolateral medial forebrain bundle using HAMLET

Acta Neurochirurgica (2019) 161:1559–1569

Growing interest exists for superolateral medial forebrain bundle (slMFB) deep brain stimulation (DBS) in psychiatric disorders. The surgical approach warrants tractographic rendition. Commercial stereotactic planning systems use deterministic tractography which suffers from inherent limitations, is dependent on manual interaction (ROI definition), and has to be regarded as subjective. We aimed to develop an objective but patient-specific tracking of the slMFB which at the same time allows the use of a commercial surgical planning system in the context of deep brain stimulation.

Methods The HAMLET (Hierarchical Harmonic Filters for Learning Tracts from Diffusion MRI) machine learning approach was introduced into the standardized workflow of slMFB DBS tractographic planning on the basis of patientspecific dMRI. Rendition of the slMFB with HAMLET serves as an objective comparison for the refinement of the deterministic tracking procedure. Our application focuses on the tractographic planning of DBS (N = 8) for major depression and OCD.

Results Previous results have shown that only fibers belonging to the ventral tegmental area to prefrontal/orbitofrontal axis should be targeted. With the proposed technique, the deterministic tracking approach, that serves as the surgical planning data, can be refined, over-sprouting fibers are eliminated, bundle thickness is reduced in the target region, and thereby probably a more accurate targeting is facilitated. The HAMLET-driven method is meant to achieve a more objective surgical fiber display of the slMFB with deterministic tractography.

Conclusions The approach allows overlying the results of patient-specific planning from two different approaches (manual deterministic and machine learningHAMLET). HAMLET shows the slMFB as a volume and thus serves as an objective tracking corridor. It helps to refine results from deterministic tracking in the surgical workspace without interfering with any part of the standard software solution. We have now included this workflow in our daily clinical experimental work on slMFB DBS for psychiatric indications.

%d bloggers like this: