sEVD—smartphone-navigated placement of external ventricular drains

Acta Neurochirurgica (2020) 162:513–521

Currently, the trajectory for insertion of an external ventricular drain (EVD) is mainly determined using anatomical landmarks. However, non-assisted implantations frequently require multiple attempts and are associated with EVD malpositioning and complications. The authors evaluated the feasibility and accuracy of a novel smartphone-guided, angleadjusted technique for assisted implantations of an EVD (sEVD) in both a human artificial head model and a cadaveric head.

Methods After computed tomography (CT), optimal insertion angles and lengths of intracranial trajectories of the EVDs were determined. A smartphone was calibrated to the mid-cranial sagittal line. Twenty EVDs were placed using both the premeasured data and smartphone-adjusted insertion angles, targeting the center of the ipsilateral ventricular frontal horn. The EVD positions were verified with post-interventional CT.

Results All 20 sEVDs (head model, 8/20; cadaveric head, 12/20) showed accurate placement in the ipsilateral ventricle. The sEVD tip locations showed a mean target deviation of 1.73° corresponding to 12 mm in the plastic head model, and 3.45° corresponding to 33mm in the cadaveric head. The mean duration of preoperative measurements on CT data was 3 min, whereas sterile packing, smartphone calibration, drilling, and implantation required 9 min on average.

Conclusions By implementation of an innovative navigation technique, a conventional smartphone was used as a protractor for the insertion of EVDs. Our ex vivo data suggest that smartphone-guided EVD placement offers a precise, rapidly applicable, and patient-individualized freehand technique based on a standard procedure with a simple, cheap, and widely available multifunctional device.

%d bloggers like this: