Value of whole-body low-dose computed tomography in patients with ventriculoperitoneal shunts: a retrospective study

J Neurosurg 129:1598–1603, 2018

The gold standard for evaluation of ventriculoperitoneal (VP) shunt position, dislocation, or disconnection is conventional radiography. Yet, assessment with this modality can be challenging because of low image quality and can result in repetitive radiation exposure with high fluctuation in the radiation dose. Recently, CT-based radiation doses have been significantly reduced by using low-dose protocols. Thus, whole-body low-dose CT (LDCT) has become applicable for routine use in VP shunt evaluation. The authors here compared image quality and approximate radiation dose between radiography and LDCT in patients with implanted VP shunt systems.

METHODS Ventriculoperitoneal shunt systems have been investigated with LDCT scanning at the authors’ department since 2015. A consecutive series of 57 patients (70 investigations) treated between 2015 and 2016 was retrospectively assessed. A historical patient cohort that had been evaluated with radiography was compared with the LDCT patients in terms of radiation dose and image quality. Three independent observers evaluated projection of the valve pressure level and correct intraperitoneal position, as well as complete shunt projection, using a Likert-type scale of 1–5, where 1 indicated “not assessable” and 5 meant “assessable with high accuracy.” Descriptive statistics and the Mann-Whitney U-test were used for analysis.

RESULTS Twenty-seven radiographs (38.6%) and 43 LDCT scans (61.4%) were analyzed. The median dose-length product (DLP) of the LDCT scans was 100 mGy·cm (range 59.9–183 mGy·cm). The median total dose-area product (DAP) of the radiographic images was 3177 mGy·cm2 (range 641–13,833 mGy·cm2). The estimated effective dose (EED) was significantly lower with the LDCT scan (p < 0.001). The median EED was 4.93 and 1.90 mSv for radiographs and LDCT, respectively. Significantly better identification of the abdominal position of the distal shunt catheter was achieved with LDCT (p < 0.001). Simultaneously, significantly improved visualization of the entire shunt system was realized with this technique (p < 0.001). On the contrary, identification of the valve settings was significantly worse with LDCT (p < 0.001).

CONCLUSIONS Whole-body LDCT scanning allows good visualization of the distal catheter after VP shunt placement. Despite the fact that only a rough estimation of effective doses is possible in a direct comparison of LDCT and radiography, the data showed that shunt assessment via LDCT does not lead to greater radiation exposure. Thus, especially in difficult anatomical conditions, as in patients who have undergone multiple intraabdominal surgeries, have a high BMI, or are immobile, the use of LDCT shunt evaluation has high clinical value. Further data are needed to determine the value of LDCT for the evaluation of complications or radiation dose in pediatric patients.


Minimally invasive transforaminal lumbar interbody fusions and fluoroscopy

Minimally invasive transforaminal lumbar interbody fusions and fluoroscopy

Neurosurg Focus 35 (2):E8, 2013

There is an increasing awareness of radiation exposure to surgeons and the lifelong implications of such exposure. One of the main criticisms of minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) is the amount of ionizing radiation required to perform the procedure. The goal in this study was to develop a protocol that would minimize the fluoroscopy time and radiation exposure needed to perform an MIS TLIF without compromising visualization of the anatomy or efficiency of the procedure.

Methods. A retrospective review of a prospectively collected database was performed to review the development of a low-dose protocol for MIS TLIFs in which a combination of low-dose pulsed fluoroscopy and digital spot images was used. Total fluoroscopy time and radiation dose were reviewed for 50 patients who underwent single-level MIS TLIFs.

Results. Fifty patients underwent single-level MIS TLIFs, resulting in the placement of 200 pedicle screws and 57 interbody spacers. There were 28 women and 22 men with an average age of 58.3 years (range 32–78 years). The mean body mass index was 26.2 kg/m2 (range 17.1–37.6 kg/m2). Indications for surgery included spondylolisthesis (32 patients), degenerative disc disease with radiculopathy (12 patients), and recurrent disc herniation (6 patients). Operative levels included 7 at L3–4, 40 at L4–5, and 3 at L5–S1. The mean operative time was 177 minutes (range 139–241 minutes). The mean fluoroscopic time was 18.72 seconds (range 7–29 seconds). The mean radiation dose was 0.247 mGy*m2 (range 0.06046–0.84054 mGy*m2). No revision surgery was required for any of the patients in this series.

Conclusions. Altering the fluoroscopic technique to low-dose pulse images or digital spot images can dramatically decrease fluoroscopy times and radiation doses in patients undergoing MIS TLIFs, without compromising image quality, accuracy of pedicle screw placement, or efficiency of the procedure.

Radiation-Induced Complications in Endovascular Neurosurgery

Table Height

Neurosurgery 72:566–572, 2013

The incidence of radiation-induced complications is increasingly part of the informed consent process for patients undergoing neuroendovascular procedures. Data guiding these discussions in the era of modern radiation-minimizing equipment is lacking.

OBJECTIVE: To quantify the rates of skin and hair effects at a modern high-volume neurovascular center, and to assess the feasibility of accurately quantifying the risk of future central nervous system (CNS) tumor formation.

METHODS: We reviewed a prospectively collected database of endovascular procedures performed at our institution in 2008. The entrance skin dose and brain dose were calculated. Patients receiving skin doses .2 Gy were contacted to inquire about skin and hair changes. We reviewed several recent publications from leading radiation physics bodies to evaluate the feasibility of accurately predicting future cancer risk from neurointerventional procedures.

RESULTS: Seven hundred two procedures were included in the study. Of the patients receiving .2 Gy, 39.6% reported subacute skin or hair changes following their procedure, of which 30% were permanent. Increasing skin dose was significantly associated with permanent hair loss. We found substantial methodological difficulties in attempting to model the risk of future CNS tumor formation given the gaps in our current understanding of the brain’s susceptibility to low-dose ionizing radiation.

CONCLUSION: Radiation exposures exceeding 2 Gy are common in interventional neuroradiology despite modern radiation-minimizing technology. The incidence of side effects approaches 40%, although the majority is self-limiting. Gaps in current models of brain tumor formation after exposure to radiation preclude accurately quantifying the risk of future CNS tumor formation.

Accuracy of Image-Guided Pedicle Screw Placement Using Intraoperative Computed Tomography- Based Navigation With Automated Referencing. Part II: Thoracolumbar Spine

Neurosurgery 69:1307–1316, 2011 DOI: 10.1227/NEU.0b013e31822ba190

Image-guided spinal instrumentation may reduce complications in spinal instrumentation.

OBJECTIVE: To assess accuracy, time efficiency, and staff radiation exposure during thoracolumbar screw instrumentation guided by intraoperative computed tomography (iCT)-based neuronavigation (iCT-N).

METHODS: In 55 patients treated for idiopathic and degenerative deformities, 826 screws were inserted in the thoracic (T2–T12; n = 243) and lumbosacral (L1–S1; n = 545) spine, as well as ilium (n = 38) guided by iCT-N. Up to 17 segments were instrumented following a single automated registration sequence with the dynamic reference arc (DRA) uniformly attached to L5. Accuracy of iCT-N was assessed by calculating angular deviations between individual navigated tool trajectories and final implant positions. Final screw positions were also graded according to established classification systems. Clinical and radiological outcome was assessed at 12 to 14 months.

RESULTS: Additional intraoperative fluoroscopy was unnecessary, eliminating staff radiation exposure. Unisegmental K-wire insertion required 4.6 6 2.9 minutes. Of the thoracic pedicle screws 98.4% were assigned grades I to III according to the Heary classification, with 1.6% grade IV placement. In the lumbar spine, 94.4% of screws were completely contained (Gertzbein classification grade 0), 4.6% displayed minor pedicle breaches ,2 mm(grade 1), and 1% of lumbar screws deviated by.2 to,4 mm (grade 2). The accuracy of iCT-N progressively deteriorates with increasing distance from the DRA, but allows safe instrumentation of up to 12 segments.

CONCLUSION: iCT-N using automated referencing allows for safe, highly accurate multilevel instrumentation of the entire thoracolumbosacral spine and ilium, rendering additional intraoperative imaging dispensable. In addition, automated registration is time-efficient and significantly reduces the need for re-registration in multilevel surgery.

Accuracy of Image-Guided Pedicle Screw Placement Using Intraoperative Computed Tomography- Based Navigation With Automated Referencing, Part I: Cervicothoracic Spine

Neurosurgery 69:782–795, 2011 DOI: 10.1227/NEU.0b013e318222ae16

Image-guided spinal instrumentation reduces the incidence of implant misplacement.

OBJECTIVE: To assess the accuracy of intraoperative computed tomography (iCT)-based neuronavigation (iCT-N).

METHODS: In 35 patients (age range, 18-87 years), a total of 248 pedicle screws were placed in the cervical (C1-C7) and upper and midthoracic (T1-T8) spine. An automated iCT registration sequence was used for multisegmental instrumentation, with the reference frame fixed to either a Mayfield head clamp and/or the most distal spinous process within the instrumentation. Pediculation was performed with navigated drill guides or Jamshidi cannulas. The angular deviation between navigated tool trajectory and final implant positions (evaluated on postinstrumentation iCT or postoperative CT scans) was calculated to assess the accuracy of iCT-N. Final screw positions were also graded according to established classification systems. Mean follow-up was 16.7 months.

RESULTS: Clinically significant screw misplacement or iCT-N failure mandating conversion to conventional technique did not occur. A total of 71.4% of patients self-rated their outcome as excellent or good at 12 months; 99.3% of cervical screws were compliant with Neo classification grades 0 and 1 (grade 2, 0.7%), and neurovascular injury did not occur. In addition, 97.8% of thoracic pedicle screws were assigned grades I to III of the Heary classification, with 2.2% grade IV placement. Accuracy of iCT-N progressively deteriorated with increasing distance from the spinal reference clamp but allowed safe instrumentation of up to 10 segments.

CONCLUSION: Image-guided spinal instrumentation using iCT-N with automated referencing allows safe, highly accurate multilevel instrumentation of the cervical and upper and midthoracic spine. In addition, iCT-N significantly reduces the need for reregistration in multilevel surgery.

O-Arm–Guided Balloon Kyphoplasty: Prospective Single-Center Case Series of 54 Consecutive Patients

Neurosurgery 68[ONS Suppl 2]:ons250–ons256, 2011 DOI: 10.1227/NEU.0b013e31821421b9

Balloon kyphoplasty is widely used to treat vertebral compression fractures. Procedure outcome and safety are directly linked to precise radiological imaging requiring 1 or 2 C arms to allow correct visualization throughout the procedure. This minimally invasive spinal surgery is associated with radiation exposure for both patient and surgeon. In our center, we switched from using a C-arm to an O-arm image guidance system to perform balloon kyphoplasty. Our preliminary experience is reported in Acta Neurochirurgica, and the encouraging results led us to study this subject more extensively. This article presents our complete results. To the best of our knowledge, there is no comparable clinical series describing O-arm use in kyphoplasty procedures published in the literature. OBJECTIVE: To report our complete results of using the O-arm guidance system to perform balloon kyphoplasty.

METHODS: We prospectively evaluated O-arm–guided kyphoplasty procedure in 54 consecutive patients and measured x-ray exposure and fluoroscopy time.

RESULTS: The mean surgical time for the procedure was 38 minutes with a mean fluoroscopy procedure time of 3.1 minutes. The mean fluoroscopy time by level was 2.5 minutes. Mean irradiation dose by procedure was 220 mGy and by level was 166 mGy. There was a significant reduction in fluoroscopy time and x-ray exposure from 5.1 minutes with classic C-arm use to 3.1 minutes when with O-arm use without additional time required for positioning the system.

CONCLUSION: With this new intraoperative system, the overall surgical and fluoroscopy times can be further reduced in the near future.