Navigated 3D–ultrasound versus conventional neuronavigation during awake resections of eloquent low-grade gliomas

Acta Neurochir (2018) 160:331–342

The data showing usefulness of navigated 3D– ultrasound (3DUS) during awake resections of eloquent gliomas are sparse. Results of surgeries performed using 3DUS were never compared to procedures guided by standard neuronavigation. The aim of this work is to assess the effectiveness of 3DUS during awake resections of eloquent low-grade gliomas (LGGs) by comparing surgical results of two series of patients operated on using conventional neuronavigation and using 3DUS. To our knowledge, a similar study is lacking in the literature.

Methods During a 4-year period (September 2006 to August 2010) 21 awake resections of LGGs guided by neuronavigation (series 1, S1) were consecutively performed in Department of Neurosurgery in Bratislava. During another 4-year period (August 2010 to July 2014) 28 awake resections of LGGs guided by 3DUS (series 2, S2) were consecutively conducted. In both patients series, the eloquent cortical and subcortical structures were intraoperatively detected by direct electrical stimulation. Extent of tumor resection (EOR) and functional outcome in both series were compared.

Results EOR was significantly greater (p = 0.022) in S2 (median = 93.25%; mean = 86.79%), as compared to S1 (median 87.1%; mean = 75.85%). One permanent minor deficit in S1 and 2 minor deficits in S2 occurred, the difference was not significant (p = 0.999).

Conclusions Our work represents the first study comparing results of surgeries guided by 3DUS versus conventional navigation. The extent of awake resections of eloquent LGG guided by 3DUS was greater comparing to awake resections guided by standard neuronavigation; use of 3DUS had no impact on the number of new permanent deficits.

Simultaneous bilateral stereotactic procedure for deep brain stimulation implants

Simultaneous bilateral stereotactic procedure for deep brain stimulation implants

J Neurosurg 125:85–89, 2016

Currently, bilateral procedures involve 2 sequential implants in each of the hemispheres. The present report demonstrates the feasibility of simultaneous bilateral procedures during the implantation of deep brain stimulation (DBS) leads.

Methods Fifty-seven patients with movement disorders underwent bilateral DBS implantation in the same study period. The authors compared the time required for the surgical implantation of deep brain electrodes in 2 randomly assigned groups. One group of 28 patients underwent traditional sequential electrode implantation, and the other 29 patients underwent simultaneous bilateral implantation. Clinical outcomes of the patients with Parkinson’s disease (PD) who had undergone DBS implantation of the subthalamic nucleus using either of the 2 techniques were compared.

Results Overall, a reduction of 38.51% in total operating time for the simultaneous bilateral group (136.4 ± 20.93 minutes) as compared with that for the traditional consecutive approach (220.3 ± 27.58 minutes) was observed. Regarding clinical outcomes in the PD patients who underwent subthalamic nucleus DBS implantation, comparing the preoperative off-medication condition with the off-medication/on-stimulation condition 1 year after the surgery in both procedure groups, there was a mean 47.8% ± 9.5% improvement in the Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) score in the simultaneous group, while the sequential group experienced 47.5% ± 15.8% improvement (p = 0.96). Moreover, a marked reduction in the levodopa-equivalent dose from preoperatively to postoperatively was similar in these 2 groups. The simultaneous bilateral procedure presented major advantages over the traditional sequential approach, with a shorter total operating time.

Conclusions A simultaneous stereotactic approach significantly reduces the operation time in bilateral DBS procedures, resulting in decreased microrecording time, contributing to the optimization of functional stereotactic procedures.

Intra-operative correction of brain-shift

Intra-operative correction brain-shift

Acta Neurochir (2014) 156:1301–1310

Brain-shift is a major source of error in neuronavigation systems based on pre-operative images. In this paper, we present intra-operative correction of brain-shift using 3D ultrasound.

Methods The method is based on image registration of vessels extracted from pre-operative MRA and intra-operative power Doppler-based ultrasound and is fully integrated in the neuronavigation software.

Results We have performed correction of brain-shift in the operating room during surgery and provided the surgeon with updated information. Here, we present data from seven clinical cases with qualitative and quantitative error measures.

Conclusion The registration algorithm is fast enough to provide the surgeon with updated information within minutes and accounts for large portions of the experienced shift. Correction of brain-shift can make pre-operative data like fMRI and DTI reliable for a longer period of time and increase the usefulness of the MR data as a supplement to intra-operative 3D ultrasound in terms of overview and interpretation.

Preoperative Imaging to Predict Intraoperative Changes in Tumor-to-Corticospinal Tract Distance

Preoperative Imaging to Predict Intraoperative Changes in Tumor-to-Corticospinal Tract Distance

Neurosurgery 75:23–30, 2014

Preoperative diffusion tensor imaging (DTI) is used to demonstrate corticospinal tract (CST) position. Intraoperative brain shifts may limit preoperative DTI value, and studies characterizing such shifts are lacking.

OBJECTIVE: To examine tumor characteristics that could predict intraoperative shift in tumor-to-CST distance using high-field intraoperative magnetic resonance imaging.

METHODS: We retrospectively evaluated preoperative and intraoperative DTIs, tumor pathology, and imaging characteristics of patients who underwent resection of an intraaxial tumor adjacent to the CST to identify covariates that significantly affected shift in tumor-to-CST distance. For validation, we analyzed data from a separate, 20-patient cohort.

RESULTS: In the first cohort, the mean intraoperative shift in the tumor-to-CST distance was 3.18 6 3.58 mm. The mean shift for the 20 patients with contrast and the 5 patients with non–contrast-enhancing tumors was 3.93 6 3.64 and 0.18 6 0.18 mm, respectively (P , .001). No association was found between intraoperative shift in tumor-to-CST distance and tumor pathology, tumor volume, edema volume, preoperative tumor-to- CST distance, or extent of resection. According to receiver-operating characteristic analysis, nonenhancement predicted a tumor-to-CST distance shift of #0.5 mm, with a sensitivity of 100% and a specificity of 75%. We validated these findings using the second cohort.

CONCLUSION: For nonenhancing intra-axial tumors, preoperative DTI is a reliable method for assessing intraoperative tumor-to-CST distance because of minimal intraoperative shift, a finding that is important in the interpretation of subcortical motor evoked potential to maximize extent of resection and to preserve motor function. In resection of intra-axial enhancing tumors, intraoperative imaging studies are crucial to compensate for brain shift.

The impact of brain shift in deep brain stimulation surgery

Acta Neurochir (2012) 154:2063–2068

The impact of brain shift on deep brain stimulation surgery is considerable. In DBS surgery, brain shift is mainly caused by CSF loss. CSF loss can be estimated by post-surgical intracranial air. Different approaches and techniques exist to minimize CSF loss and hence brain shift. The aim of this survey was to investigate the extent and dynamics of CSF loss during DBS surgery, analyze its impact on final electrode position, and describe a simple and inexpensive method of burr hole closure.

Methods Sixty-six patients being treated with deep brain stimulation were retrospectively analyzed for this treatise. During surgery, CSF loss was minimized using bone wax as a burr hole closure. Intracranial air volume was calculated based on early post-surgery stereotactic 3D CT and correlated with duration of surgery and electrode deviations derived from post-surgery image fusion.

Results Median early post-surgery intracranial air was 2.1 cm3 (range 0–35.7 cm3, SD 8.53 cm3). No correlation was found between duration of surgery and CSF-loss (R0 0.078, p00.534), indicating that CSF loss mainly occurs early during surgery. Linear regression analysis revealed no significant correlations regarding volume of intracranial air and electrode displacement in any of the three principal axes. No significant difference regarding electrode deviations between first and second side of surgery were observed.

Conclusions CSF loss mainly occurs during the early phase of DBS surgery. CSF loss during a later phase of surgery can be effectively averted by burr hole closure. Postoperative intracranial air volumes up to 35 cm3 did not result in significant electrode displacement in our series. Comparing our results to studies previously published on this subject, burr hole closure using bone wax is highly effective.

Discrepancies between the MRI and the electrophysiologically defined subthalamic nucleus

Acta Neurochir (2011) 153:2307–2318. DOI 10.1007/s00701-011-1081-7

The aim of our study was to evaluate discrepancies between the electrophysiologically and MRI-defined subthalamic nucleus (STN) in order to contribute to the ongoing debate of whether or not microelectrode recording (MER) provides additional information to imageguided targeting in deep brain stimulation.

Methods: Forty-four STNs in 22 patients with Parkinson’s disease were investigated. The three-dimensional MRI-defined STN was derived from segmentations of axial and coronal T2-weighted images. The electrophysiological STNs were generated from intraoperative MERs in 1,487 locations. The stereotactical coordinates of positive and negative STN recordings were re-imported to the planning software, where a three-dimensional reconstruction of the electrophysiological STN was performed and fused to the MRI data set. The estimated borders of the MRI- and MERSTN were compared. For statistical analysis Student’s t, Mann-Whitney rank sum and Fisher’s exact tests were used.

Results: MER-STN volumes, which were found outside the MRI-STN, ranged from 0 mm3 to 87 mm3 (mean: 45 mm3). A mean of 44% of the MER-STN volumes exceeded the MRI-STN (maximum: 85.1%; minimum: 15.1 %); 53.4% (n=793) of the microelectrode recordings were concordant and 46.6% (n=694) discordant with the MRI-defined anatomical STN. Regarding the dorsal borders, we found discrepancies between the MER- and MRI-STN of 0.27 mm (= mean; SD: 0.51 mm) on the first operated side and 1.51 mm (SD: 1.5 mm) on the second (p=0.010, t-test).

Conclusions: MER provides additional information to highresolution anatomical MR images and may help to detect the amount and direction of brain shift.

Intraoperative X-Ray Detection and MRI-Based Quantification of Brain Shift Effects Subsequent to Implantation of the First Electrode in Bilateral Implantation of Deep Brain Stimulation Electrodes

Stereotact Funct Neurosurg 2009;87:322-329 (DOI:10.1159/000235804)

After implantation of the first electrode in bilateral deep brain stimulation (DBS) lead implantation, brain shift effects in the target region and along the implantation trajectory of the second electrode are quantified with intraoperative magnetic resonance imaging (MRI). We investigated intraoperative X-ray imaging for its feasibility in indirect detection of brain shift.

Methods: In 25 patients who underwent bilateral DBS lead implantation, X-ray and MRI were performed before and after implantation of the first electrode. Two parameters of brain shift were assessed with nonrigid free-form deformation field analysis of the MRI data: global brain shift along the anterior and posterior commissure (AC-PC) line and specific brain shift along the implantation trajectory of the second electrode. Pre- and intraoperative X-ray images were geometrically and intensity corrected for detection of significant signal changes through intracranial air accumulation during implantation of the first electrode.

Results: After implantation of the first electrode, brain shift greater than 1 mm (maximum 1.3 mm) was observed at the AC and brain shift greater than 2 mm (maximum 2.5 mm) was observed along the planned implantation trajectory of the second electrode. In 1 patient, the implantation trajectory of the second electrode went through a sulcus after cortical brain shift. In 9 patients, intracranial air volume between 0.1 and 38.5 ml was observed with MRI after implantation of the first electrode. Significant X-ray absorption changes were induced by an intracranial air volume of greater than 8 ml.

Conclusion: In bilateral DBS implantation, brain shift effects can cause misallocation of the second electrode with the risk of adverse or no stimulation effects as well as unnecessary cortical damage. A lack of X-ray signal changes caused by intracranial air invasion during DBS lead implantation indicates a lack of clinically relevant brain shift.

%d bloggers like this: