Spinopelvic sagittal compensation in adult cervical deformity

J Neurosurg Spine 39:1–10, 2023

The objective of this study was to evaluate spinopelvic sagittal alignment and spinal compensatory changes in adult cervical kyphotic deformity.

METHODS A database composed of 13 US spine centers was retrospectively reviewed for adult patients who underwent cervical reconstruction with radiographic evidence of cervical kyphotic deformity: C2–7 sagittal vertical axis > 4 cm, chin-brow vertical angle > 25°, or cervical kyphosis (T1 slope [T1S] cervical lordosis [CL] > 15°) (n = 129). Sagittal parameters were evaluated preoperatively and in the early postoperative window (6 weeks to 6 months postoperatively) and compared with asymptomatic control patients. Adult cervical deformity patients were further stratified by degree of cervical kyphosis (severe kyphosis, C2–T3 Cobb angle ≤ −30°; moderate kyphosis, ≤ 0°; and minimal kyphosis, > 0°) and severity of sagittal malalignment (severe malalignment, sagittal vertical axis T3–S1 ≤ −60 mm; moderate malalignment, ≤ 20 mm; and minimal malalignment > 20 mm).

RESULTS Compared with asymptomatic control patients, cervical deformity was associated with increased C0–2 lordosis (32.9° vs 23.6°), T1S (33.5° vs 28.0°), thoracolumbar junction kyphosis (T10–L2 Cobb angle −7.0° vs −1.7°), and pelvic tilt (PT) (19.7° vs 15.9°) (p < 0.01). Cervicothoracic kyphosis was correlated with C0–2 lordosis (R = −0.57, p < 0.01) and lumbar lordosis (LL) (R = −0.20, p = 0.03). Cervical reconstruction resulted in decreased C0–2 lordosis, increased T1S, and increased thoracic and thoracolumbar junction kyphosis (p < 0.01). Patients with severe cervical kyphosis (n = 34) had greater C0–2 lordosis (p < 0.01) and postoperative reduction of C0–2 lordosis (p = 0.02) but no difference in PT. Severe cervical kyphosis was also associated with a greater increase in thoracic and thoracolumbar junction kyphosis postoperatively (p = 0.01). Patients with severe sagittal malalignment (n = 52) had decreased PT (p = 0.01) and increased LL (p < 0.01), as well as a greater postoperative reduction in LL (p < 0.01).

CONCLUSIONS Adult cervical deformity is associated with upper cervical hyperlordotic compensation and thoracic hypokyphosis. In the setting of increased kyphotic deformity and sagittal malalignment, thoracolumbar junction kyphosis and lumbar hyperlordosis develop to restore normal center of gravity. There was no consistent compensatory pelvic retroversion or anteversion among the adult cervical deformity patients in this cohort.

Understanding sagittal compensation in adult spinal deformity patients: relationship between pelvic tilt and lower-extremity position

J Neurosurg Spine 35:616–623, 2021

In adult spinal deformity (ASD), quantifying preoperative lower-extremity (LE) compensation is important in formulating an operative plan to achieve optimal global sagittal alignment. Whole-body radiographs are not always available. This study evaluated the possibility of estimating LE compensation without whole-body radiographs.

METHODS In total, 200 consecutive ASD patients with full-body radiographic assessment were categorized into the following three groups according to their cranio-hip balance (distance from the cranial sagittal vertical axis to the hip axis [CrSVA-H]): group 1, anterior-shift (A-shift) group (CrSVA-H > 40 mm); group 2, balanced group, −40 mm < CrSVA-H < 40 mm; and group 3, posterior-shift (P-shift) group, CrSVA-H < −40 mm. After analyzing the correlation between CrSVAH, pelvic tilt (PT), and LE parameters, the cutoff PT and PT/pelvic incidence (PI) values that correlated with the presence of LE compensation were determined. Previously published data from asymptomatic volunteers were used as a baseline threshold (sacrofemoral angle [SFA] > 217.0° and knee flexion angle [KA] > 11.0°).

RESULTS Among the hip, knee, and ankle, only KA showed a significant increase in the A-shift group compared to the other two groups (p < 0.01). With a wide threshold (SFA > 208.0° and KA > 5.0°), 84.9% of the A-shift group showed LE compensation (hip or knee or both), which was a significantly greater percentage than those in the balanced and P-shift groups (48.4% and 51.9%, p < 0.01). With a narrow threshold (SFA > 217.0° and KA > 11.0°), 62.2% of the A-shift group showed any LE compensation, which was also a higher percentage than the other two groups. The CrSVA-H was moderately correlated with KA (r = 0.502), but had no correlation with PT, SFA, and ankle dorsiflexion angle (AA). PT showed a moderate/strong correlation with SFA, KA, and AA (r = 0.846, 0.624, and 0.622, respectively). With receiver operating characteristic curves, the authors determined that a 23.0° PT with PT/PI > 0.46 predicts the presence of any type of LE compensation with use of the wide threshold.

CONCLUSIONS ASD patients with increased CrSVA-H, which represents cranio-hip anterior imbalance, demonstrated a higher prevalence of LE compensation, especially knee flexion, compared to those with neutral and posterior shift of CrSVA. PT represents the extent of LE compensation in patients with spinal sagittal malalignment. Using the cutoff value of PT determined in this study, surgeons can preoperatively estimate the extent of LE compensation without obtaining a full-body radiograph.