Postoperative Displacement of Deep Brain Stimulation Electrodes Related to Lead-Anchoring Technique

Postoperative Displacement of Deep Brain Stimulation Electrodes Related to Lead-Anchoring Technique-1

Neurosurgery 73:681–688, 2013

Displacement of deep brain stimulation (DBS) electrodes may occur after surgery, especially due to large subdural air collections, but other factors might contribute.

OBJECTIVE: To investigate factors potentially contributing to postoperative electrode displacement, in particular, different lead-anchoring techniques.

METHODS: We retrospectively analyzed 55 patients (106 electrodes) with Parkinson disease, dystonia, tremor, and obsessive-compulsive disorder in whom early postoperative and long-term follow-up computed tomography (CT) was performed. Electrodes were anchored with a titanium microplate or with a commercially available plastic cap system. Two independent examiners determined the stereotactic coordinates of the deepest DBS contact on early postoperative and long-term follow-up CT. The influence of age, surgery duration, subdural air volume, use of microrecordings, fixation method, follow-up time, and side operated on first was assessed.

RESULTS: Subdural air collections measured on average 4.36±6.2 cm3. Three-dimensional (3-D) electrode displacement and displacement in the X, Y, and Z axes significantly correlated only with the anchoring method, with larger displacement for microplate-anchored electrodes. The average 3-D displacement for microplate-anchored electrodes was 2.3 ± 2.0 mm vs 1.5 ± 0.6 mm for electrodes anchored with the plastic cap (P = .030). Fifty percent of the microplate-anchored electrodes showed 2-mm or greater (potentially relevant) 3-D displacement vs only 25% of the plastic cap–anchored electrodes (P < .01).

CONCLUSION: The commercially available plastic cap system is more efficient in preventing postoperative DBS electrode displacement than titanium microplates. A reliability analysis of the electrode fixation is warranted when alternative anchoring methods are used.

Tissue localization during resective epilepsy surgery

Tissue localization

Neurosurg Focus 34 (6):E8, 2013

Imaging-guided surgery (IGS) systems are widely used in neurosurgical practice. During epilepsy surgery, the authors routinely use IGS landmarks to localize intracranial electrodes and/or specific brain regions. The authors have developed a technique to coregister these landmarks with pre- and postoperative scans and the Montreal Neurological Institute (MNI) standard space brain MRI to allow 1) localization and identification of tissue anatomy; and 2) identification of Brodmann areas (BAs) of the tissue resected during epilepsy surgery. Tracking tissue in this fashion allows for better correlation of patient outcome to clinical factors, functional neuroimaging findings, and pathological characteristics and molecular studies of resected tissue.

Methods. Tissue samples were collected in 21 patients. Coordinates from intraoperative tissue localization were downloaded from the IGS system and transformed into patient space, as defined by preoperative high-resolution T1-weighted MRI volume. Tissue landmarks in patient space were then transformed into MNI standard space for identification of the BAs of the tissue samples.

Results. Anatomical locations of resected tissue were identified from the intraoperative resection landmarks. The BAs were identified for 17 of the 21 patients. The remaining patients had abnormal brain anatomy that could not be meaningfully coregistered with the MNI standard brain without causing extensive distortion.

Conclusions. This coregistration and landmark tracking technique allows localization of tissue that is resected from patients with epilepsy and identification of the BAs for each resected region. The ability to perform tissue localization allows investigators to relate preoperative, intraoperative, and postoperative functional and anatomical brain imaging to better understand patient outcomes, improve patient safety, and aid in research.

%d bloggers like this: