Functional outcomes after resection of middle frontal gyrus diffuse gliomas

J Neurosurg 137:1–8, 2022

The clinical outcomes for patients undergoing resection of diffuse glioma within the middle frontal gyrus (MFG) are understudied. Anatomically, the MFG is richly interconnected to known language areas, and nearby subcortical fibers are at risk during resection. The goal of this study was to determine the functional outcomes and intraoperative mapping results related to resection of MFG gliomas. Additionally, the study aimed to evaluate if subcortical tract disruption on imaging correlated with functional outcomes.

METHODS The authors performed a retrospective review of 39 patients with WHO grade II–IV diffuse gliomas restricted to only the MFG and underlying subcortical region that were treated with resection and had no prior treatment. Intraoperative mapping results and postoperative neurological deficits by discharge and 90 days were assessed. Diffusion tensor imaging (DTI) tractography was used to assess subcortical tract integrity on pre- and postoperative imaging.

RESULTS The mean age of the cohort was 37.9 years at surgery, and the median follow-up was 5.1 years. The mean extent of resection was 98.9% for the cohort. Of the 39 tumors, 24 were left sided (61.5%). Thirty-six patients (92.3%) underwent intraoperative mapping, with 59% of patients undergoing an awake craniotomy. No patients had positive cortical mapping sites overlying the tumor, and 12 patients (33.3%) had positive subcortical stimulation sites. By discharge, 8 patients had language dysfunction, and 5 patients had mild weakness. By 90 days, 2 patients (5.1%) had persistent mild hand weakness only. There were no persistent language deficits by 90 days. On univariate analysis, preoperative tumor size (p = 0.0001), positive subcortical mapping (p = 0.03), preoperative tumor invasion of neighboring subcortical tracts on DTI tractography (p = 0.0003), and resection cavity interruption of subcortical tracts on DTI tractography (p < 0.0001) were associated with an increased risk of having a postoperative deficit by discharge. There were no instances of complete subcortical tract transections in the cohort.

CONCLUSIONS MFG diffuse gliomas may undergo extensive resection with minimal risk for long-term morbidity. Partial subcortical tract interruption may lead to transient but not permanent deficits. Subcortical mapping is essential to reduce permanent morbidity during resection of MFG tumors by avoiding complete transection of critical subcortical tracts.


fMRI activation in the middle frontal gyrus as an indicator of hemispheric dominance for language in brain tumor patients: a comparison with Broca’s area

Functional imaging

Neuroradiology (2016) 58:513–520

Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area—Broca’s area (BA)—is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup.

Methods: Fifty-two right-handed subjects with solitary left hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI.

Results: Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG=315, BA=216, p<0.001). Voxel activations in the left-hemispheric MFG and BA were positively correlated (r = 0.69, p < 0.001). Mean LI in the MFG was comparable to that in BA (MFG = 0.48, BA = 0.39, p = 0.06). LIs in MFG and BA were positively correlated (r = 0.62, p < 0.001). Subjects with high- grade tumors demonstrate lower language lateralization than those with low-grade tumors in both BA and MFG (p = 0.02, p = 0.02, respectively).

Conclusion: MFG is comparable to BA in its ability to indicate hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning.

Agraphia after awake surgery for brain tumor: new insights into the anatomo-functional network of writing

Surgical Neurology. Volume 72, Issue 3, Pages 223-241 (September 2009)


Controversy still exists about neural basis underlying writing and its relation with the sites subserving oral language. Our objective is to study functional areas involved in writing network, based on the observations of different postoperative writing disorders in a population of patients without preoperative agraphia.


We analyzed the postoperative agraphia profiles in 15 patients who underwent surgery for cerebral LGGs in functional language areas, using electrical mapping under local anesthesia. These profiles were then correlated to the sites of the lesions, shown by preoperative cerebral imaging.


Our findings showed that (1) spoken language and writing functions could be dissociated, and that (2) writing is subserved, at least partially, by a network of 5 areas located in the dominant hemisphere for language: the superior parietal region, the supramarginalis gyrus, the second and third frontal convolutions, the supplementary motor area, and the insula. Each of these areas seems to have a different role in writing, which will be detailed in this article. However, among the patients, only those with lesions of the supplementary motor area did not recover from agraphia in the postoperative period (in 50% of cases).


On the basis of these results, and in the light of the recent literature, we discuss the relevance of each area in this anatomo-functional network as well as the clinical implications of such better knowledge of the neural basis of writing, especially for brain surgery and functional rehabilitation.