Stereoelectroencephalography in insular epilepsy

J Neurosurg 128:1147–1157, 2018

Insular epilepsy is relatively rare; however, exploring the insular cortex when preoperative workup raises the suspicion of insular epilepsy is of paramount importance for accurate localization of the epileptogenic zone and achievement of seizure freedom. The authors review their clinical experience with stereoelectroencephalography (SEEG) electrode implantation in patients with medically intractable epilepsy and suspected insular involvement.

METHODS A total of 198 consecutive cases in which patients underwent SEEG implantation with a total of 1556 electrodes between June 2009 and April 2013 were reviewed. The authors identified patients with suspected insular involvement based on seizure semiology, scalp EEG data, and preoperative imaging (MRI, PET, and SPECT or magnetoencephalography [MEG]). Patients with at least 1 insular electrode based on the postoperative 3D reconstruction of CT fused with the preoperative MRI were included.

RESULTS One hundred thirty-five patients with suspected insular epilepsy underwent insular implantation of a total of 303 electrodes (1–6 insular electrodes per patient) with a total of 562 contacts. Two hundred sixty-eight electrodes (88.5%) were implanted orthogonally through the frontoparietal or temporal operculum (420 contacts). Thirty-five electrodes (11.5%) were implanted by means of an oblique trajectory either through a frontal or a parietal entry point (142 contacts). Nineteen patients (14.07%) had insular electrodes placed bilaterally. Twenty-three patients (17.04% of the insular implantation group and 11.6% of the whole SEEG cohort) were confirmed by SEEG to have ictal onset zones in the insula. None of the patients experienced any intracerebral hemorrhage related to the insular electrodes. After insular resection, 5 patients (33.3%) had Engel Class I outcomes, 6 patients (40%) had Engel Class II, 3 patients (20%) had Engel Class III, and 1 patient (6.66%) had Engel Class IV.

CONCLUSIONS Insula exploration with stereotactically placed depth electrodes is a safe technique. Orthogonal electrodes are implanted when the hypothesis suggests opercular involvement; however, oblique electrodes allow a higher insular sampling rate.


The stereotactic approach for mapping epileptic networks


J Neurosurg 121:1239–1246, 2014

Stereoelectroencephalography (SEEG) is a methodology that permits accurate 3D in vivo electroclinical recordings of epileptiform activity. Among other general indications for invasive intracranial electroencephalography (EEG) monitoring, its advantages include access to deep cortical structures, its ability to localize the epileptogenic zone when subdural grids have failed to do so, and its utility in the context of possible multifocal seizure onsets with the need for bihemispheric explorations. In this context, the authors present a brief historical overview of the technique and report on their experience with 2 SEEG techniques (conventional Leksell frame-based stereotaxy and frameless stereotaxy under robotic guidance) for the purpose of invasively monitoring difficult-to-localize refractory focal epilepsy.

Methods. Over a period of 4 years, the authors prospectively identified 200 patients with refractory epilepsy who collectively underwent 2663 tailored SEEG electrode implantations for invasive intracranial EEG monitoring and extraoperative mapping. The first 122 patients underwent conventional Leksell frame-based SEEG electrode placement; the remaining 78 patients underwent frameless stereotaxy under robotic guidance, following acquisition of a stereotactic ROSA robotic device at the authors’ institution. Electrodes were placed according to a preimplantation hypothesis of the presumed epileptogenic zone, based on a standardized preoperative workup including video-EEG monitoring, MRI, PET, ictal SPECT, and neuropsychological assessment. Demographic features, seizure semiology, number and location of implanted SEEG electrodes, and location of the epileptogenic zone were recorded and analyzed for all patients. For patients undergoing subsequent craniotomy for resection, the type of resection and procedure-related complications were prospectively recorded. These results were analyzed and correlated with pathological diagnosis and postoperative seizure outcomes.

Results. The epileptogenic zone was confirmed by SEEG in 154 patients (77%), of which 134 (87%) underwent subsequent craniotomy for epileptogenic zone resection. Within this cohort, 90 patients had a minimum follow-up of at least 12 months; therein, 61 patients (67.8%) remained seizure free, with an average follow-up period of 2.4 years. The most common pathological diagnosis was focal cortical dysplasia Type I (55 patients, 61.1%). Per electrode, the surgical complications included wound infection (0.08%), hemorrhagic complications (0.08%), and a transient neurological deficit (0.04%) in a total of 5 patients (2.5%). One patient (0.5%) ultimately died due to intracerebral hematoma directly ensuing from SEEG electrode placement.

Conclusions. Based on these results, SEEG methodology is safe, reliable, and effective. It is associated with minimal morbidity and mortality, and serves as a practical, minimally invasive approach to extraoperative localization of the epileptogenic zone in patients with refractory epilepsy.