Diffusivity parameters of diffusion tensor imaging and apparent diffusion coefficient as imaging markers for predicting the treatment response of patients with trigeminal neuralgia

J Neurosurg 132:1993–1999, 2020

Trigeminal neuralgia (TN) is facial pain that is usually caused by neurovascular compression syndrome and is characterized by suddenly intense and paroxysmal pain. Radiofrequency lesioning (RFL) is one of the major treatments for TN, but the treatment response for RFL is sometimes inconsistent, and the recurrence of TN is not uncommon. This study aimed to estimate the outcome predictors of TN treated with RFL by using the parameters of diffusion tensor imaging (DTI).

METHODS Fifty-one patients with TN who were treated with RFL were enrolled in the study. MRI was performed in all patients within 1 week before surgery. The visual analog scale was used to evaluate symptom severity at three time points: before, 1 week after, and 3 months after RFL. The involved cisternal segment of the trigeminal nerves was manually selected, and the histograms of each of the diffusivity metrics—including the apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD)—were measured. The differences in the means, as well as the kurtosis and skewness of each of the diffusivity metrics between the nonrecurrent and recurrent groups, were then analyzed using the Mann-Whitney U-test.

RESULTS There were significantly lower kurtosis values (a broader peak of the distributional curves) for both FA and ADC in the recurrent group (p = 0.0004 and 0.015, respectively), compared to the nonrecurrent group. The kurtoses of AD and RD, as well as the mean and skewness of all other diffusivity metrics, did not show significant differences between the two groups.

CONCLUSIONS The pretreatment diffusivity metrics of DTI and ADC may be feasible imaging biomarkers for predicting the outcome of TN after RFL. A clarification of the kurtosis value of FA and ADC is helpful for determining the prognosis of patients after RFL.

Flatness of the infratentorial space associated with hemifacial spasm

Flatness of the infratentorial space associated with hemifacial spasm

Acta Neurochir (2016) 158:1405–1412

Whether a difference in morphology of the infratentorial space is associated with hemifacial spasm is not well understood. The aim of this study was to analyze the three-dimensional conformation of the infratentorial space and evaluate any possible contribution of morphological characteristics to the development of neurovascular compression leading to hemifacial spasm.

Methods We enrolled 25 patients with hemifacial spasm and matched them by age and sex to controls. The extent of the three-dimensional axes and the volume of the infratentorial space were measured using image analysis software for three-dimensional MRI.We evaluated the correlation between a morphological difference in the infratentorial space and changes in vascular configuration in the brain stem.

Results We found no statistical difference in volumetric analyses. The mean aspect ratio on the coronal plane (the ratio of the Z to X extent) of the infratentorial space in patients with hemifacial spasm was significantly lower (p < 0.01) than that in controls, as was the mean aspect ratio on the sagittal plane (the ratio of Z to Yextent, p <0.01). A smaller sagittal aspect ratio was correlated (p < 0.05) with greater lateral deviation of the basilar artery.

Conclusions Our results suggest that flatness of the superior-inferior dimension of the infratentorial space is an anatomical feature that characterizes patients with hemifacial spasm. We hypothesize that this unique structural variation may exaggerate the lateral deviation of the vertebrobasilar arteries due to arteriosclerosis and exacerbate the space competition among vessels and cranial nerves.

%d bloggers like this: