Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state

J Neurosurg 128:1189–1198, 2018

An effective treatment of patients in a minimally conscious state (MCS) or vegetative state (VS) caused by hypoxic encephalopathy or traumatic brain injury (TBI) is not yet available. Deep brain stimulation (DBS) of the thalamic reticular nuclei has been attempted as a therapeutic procedure mainly in patients with TBI. The purpose of this study was to investigate the therapeutic use of DBS for patients in VS or MCS.

METHODS Fourteen of 49 patients in VS or MCS qualified for inclusion in this study and underwent DBS. Of these 14 patients, 4 were in MCS and 10 were in VS. The etiology of VS or MCS was TBI in 4 cases and hypoxic encephalopathy due to cardiac arrest in 10. The selection criteria for DBS, evaluating the status of the cerebral cortex and thalamocortical reticular formation, included: neurological evaluation, electrophysiological evaluation, and the results of positron emission tomography (PET) and MRI examinations. The target for DBS was the centromedian-parafascicular (CM-pf) complex. The duration of follow-up ranged from 38 to 60 months.

RESULTS Two MCS patients regained consciousness and regained their ability to walk, speak fluently, and live independently. One MCS patient reached the level of consciousness, but was still in a wheelchair at the time the article was written. One VS patient (who had suffered a cerebral ischemic lesion) improved to the level of consciousness and currently responds to simple commands. Three VS patients died of respiratory infection, sepsis, or cerebrovascular insult (1 of each). The other 7 patients remained without substantial improvement of consciousness.

CONCLUSIONS Spontaneous recovery from MCS/VS to the level of consciousness with no or minimal need for assistance in everyday life is very rare. Therefore, if a patient in VS or MCS fulfills the selection criteria (presence of somatosensory evoked potentials from upper extremities, motor and brainstem auditory evoked potentials, with cerebral glucose metabolism affected not more than the level of hypometabolism, which is judged using PET), DBS could be a treatment option.