Contralateral posterior interhemispheric approach to deep medial parietooccipital vascular malformations

J Neurosurg 129:198–204, 2018

Deep medial parietooccipital arteriovenous malformations (AVMs) and cerebral cavernous malformations (CCMs) are traditionally resected through an ipsilateral posterior interhemispheric approach (IPIA), which creates a deep, perpendicular perspective with limited access to the lateral margins of the lesion. The contralateral posterior interhemispheric approach (CPIA) flips the positioning, with the midline positioned horizontally for retraction due to gravity, but with the AVM on the upper side and the approach from the contralateral, lower side. The aim of this paper was to analyze whether the perpendicular angle of attack that is used in IPIA would convert to a parallel angle of attack with the CPIA, with less retraction, improved working angles, and no significant increase in risk.

METHODS A retrospective review of pre- and postoperative clinical and radiographic data was performed in 8 patients who underwent a CPIA.

RESULTS Three AVMs and 5 CCMs were resected using the CPIA, with an average nidus size of 2.3 cm and CCM diameter of 1.7 cm. All lesions were resected completely, as confirmed on postoperative catheter angiography or MRI. All patients had good neurological outcomes, with either stable or improved modified Rankin Scale scores at last follow-up.

CONCLUSIONS The CPIA is a safe alternative approach to the IPIA for deep medial parietooccipital vascular malformations that extend 2 cm or more off the midline. Contralaterality and retraction due to gravity optimize the interhemispheric corridor, the surgical trajectory to the lesion, and the visualization of the lateral margin, without resection or retraction of adjacent normal cortex. Although the falx is a physical barrier to accessing the lesion, it stabilizes the ipsilateral hemisphere while gravity delivers the dissected lesion through the transfalcine window. Patient positioning, CSF drainage, venous preservation, and meticulous dissection of the deep margins are critical to the safety of this approach.

%d bloggers like this: