Potential of Human Nucleus Pulposus-Like Cells Derived From Umbilical Cord to Treat Degenerative Disc Disease

Neurosurgery 84:272–283, 2019

Degenerative disc disease (DDD) is a common spinal disorder that manifests with neck and lower back pain caused by the degeneration of intervertebral discs (IVDs). Currently, there is no treatment to cure this debilitating ailment.

OBJECTIVE: To investigate the potential of nucleus pulposus (NP)-like cells (NPCs) derived from human umbilical cord mesenchymal stem cells (MSCs) to restore degenerated IVDs using a rabbit DDD model.

METHODS: NPCs differentiated from MSC swere characterized using quantitative real-time reverse transcription polymerase chain reaction and immunocytochemical analysis. MSCs and NPCs were labeled with fluorescent dye, PKH26, and transplanted into degenerated IVDs of a rabbit model of DDD (n = 9 each). Magnetic resonance imaging of the IVDs was performed before and after IVD degeneration, and following cell transplantation. IVDs were extracted 8 wk post-transplantation and analyzed by various biochemical, immunohistological, and molecular techniques.

RESULTS: NPC derivatives of MSCs expressed known NP-specific genes, SOX9, ACAN, COL2, FOXF1, and KRT19. Transplanted cells survived, dispersed, and integrated into the degenerated IVDs. IVDs augmented with NPCs showed significant improvement in the histology, cellularity, sulfated glycosaminoglycan andwater contents of the NP. In addition, expression of human genes, SOX9, ACAN, COL2, FOXF1, KRT19, PAX6, CA12, and COMP, aswell as proteins, SOX9, ACAN, COL2, and FOXF1, suggest NP biosynthesis due to transplantation of NPCs. Based on these results, a molecular mechanism for NP regeneration was proposed.

CONCLUSION: The findings of this study demonstrating feasibility and efficacy of NPCs to regenerate NP should spur interest for clinical studies to treat DDD using cell therapy.