Endoscope- versus microscope-integrated near-infrared indocyanine green videoangiography in aneurysm surgery

J Neurosurg 131:1413–1422, 2019

The quality of surgical treatment of intracranial aneurysms is determined by complete aneurysm occlusion while preserving blood flow in the parent, branching, and perforating arteries. For a few years, there has been a nearly noninvasive and cost-effective technique for intraoperative flow evaluation: microscope-integrated indocyanine green videoangiography (mICG-VA). This method allows for real-time information about blood flow in the aneurysm and the involved vessels, but its limitations are seen in the evaluation of structures located in the depth of the surgical field, especially through small craniotomies. To compensate for these drawbacks, an endoscope-integrated ICG-VA (eICG-VA) was developed. The objective of the present study was to assess the use of eICG-VA in comparison with mICG-VA for intraoperative blood flow evaluation.

METHODS In the period between January 2011 and January 2015, 216 patients with a total of 248 intracranial saccular aneurysms were surgically treated in the Department of Neurosurgery of Saarland University Medical Center in Homburg/Saar, Germany. During 95 surgeries in 88 patients with a total of 108 aneurysms, intraoperative evaluation was performed with both eICG-VA and mICG-VA. After clipping, evaluation of complete aneurysm occlusion and flow in the parent, branching, and perforating arteries was performed using both methods. Intraoperative applicability of each technique was compared with the other and with postoperative digital subtraction angiography as a standard evaluation technique.

RESULTS Evaluation of completeness of aneurysm occlusion and of flow in the parent, branching, and perforating arteries was more successful with eICG-VA than with mICG-VA, especially for aneurysm neck assessment (88.9% vs 69.4%). For 63.9% of the aneurysms (n = 69), both methods were equivalent, but in 30.6% of the cases (n = 33), the eICG-VA provided better results for evaluating the post-clipping situation. In 4.6% of these aneurysms (n = 5), the information given by the additional endoscope considerably changed the surgical procedure. Thus, one residual aneurysm (0.9%), two neck remnants (1.9%), and two branch occlusions (1.9%) could be prevented. Nevertheless, two incomplete aneurysm occlusions (1.9%) and six neck remnants (5.6%) were revealed by postoperative digital subtraction angiography.

CONCLUSIONS Endoscope-integrated ICG-VA seems to be an improvement that might increase the quality of aneurysm surgery by providing additional information. It offers higher illumination, magnification, and an extended viewing angle. Its main advantage is its ability to assess deep-seated aneurysms, especially through small craniotomies, but further studies are required.