Biomechanics of a novel reversibly expandable dynamic craniotomy bone flap fixation plate

J Neurosurg 132:560–567, 2020

Biomechanical evaluation of a novel expandable cranial fixation plate was assessed in cadavers. The dynamic craniotomy procedure uses low-profile reversibly expandable plates that allow cranial decompression by providing for intracranial volume expansion without removal of the bone flap. The plates allow reversible outward movement of the bone flap upon an increase in intracranial pressure (ICP) and also retract the bone flap and prevent it from sinking inside the cranium once the ICP normalizes.

METHODS A comparative evaluation of the extent of ICP control with an increase in intracranial volume between various bone flap fixation techniques was undertaken along with testing of the expandable plate compliance. Static compression tests of the plates were performed to assess bone flap fixation and prevention of sinking. Quasi-static shear tension testing of the plates was undertaken to test the tolerance of the plates for expansion. Fatigue shear tension evaluation of the plates was undertaken to assess tolerance for repetitive expansion and contraction.

RESULTS The dynamic craniotomy provided superior control of ICP with an increase in intracranial volume compared to the hinged craniotomy and standard craniotomy techniques (p < 0.001). Static compression results revealed that the plates withstood bone flap sinkage with a mean peak load of 643.3 ± 26.1 N and a mean inward bone flap displacement of 1.92 ± 0.09 mm. Static shear tension results indicated that the plates could withstand a peak expansion of 71.6 mm. Dynamic shear tension testing of the plates with repetitive 15-mm outward expansion and retraction for a total of up to 500 cycles revealed no cracking and no failure points.

CONCLUSIONS The reversibly expandable plates provide for a low-profile bone flap fixation with rigid restriction of bone flap sinking and also enable cranial decompression with a high tolerance for repetitive expansion and contraction.