The perspectives of mapping and monitoring of the sense of self in neurosurgical patients

Acta Neurochirurgica (2021) 163:1213–1226

Surgical treatment of tumors, epileptic foci or of vascular origin, requires a detailed individual pre-surgical workup and intraoperative surveillance of brain functions to minimize the risk of post-surgical neurological deficits and decline of quality of life. Most attention is attributed to language, motor functions, and perception. However, higher cognitive functions such as social cognition, personality, and the sense of self may be affected by brain surgery. To date, the precise localization and the network patterns of brain regions involved in such functions are not yet fully understood, making the assessment of risks of related postsurgical deficits difficult. It is in the interest of neurosurgeons to understand with which neural systems related to selfhood and personality they are interfering during surgery.

Recent neuroscience research using virtual reality and clinical observations suggest that the insular cortex, medial prefrontal cortex, and temporo-parietal junction are important components of a neural system dedicated to self-consciousness based on multisensory bodily processing, including exteroceptive and interoceptive cues (bodily self-consciousness (BSC)).

Here, we argue that combined extra- and intra-operative approaches using targeted cognitive testing, functional imaging and EEG, virtual reality, combined with multisensory stimulations, may contribute to the assessment of the BSC and related cognitive aspects. Although the usefulness of particular biomarkers, such as cardiac and respiratory signals linked to virtual reality, and of heartbeat evoked potentials as a surrogate marker for intactness of multisensory integration for intra-operative monitoring has to be proved, systemic and automatized testing of BSC in neurosurgical patients will improve future surgical outcome.