A proposed classification system for presigmoid approaches: a scoping review

J Neurosurg 139:965–971, 2023

The “presigmoid corridor” covers a spectrum of approaches using the petrous temporal bone either as a target in treating intracanalicular lesions or as a route to access the internal auditory canal (IAC), jugular foramen, or brainstem. Complex presigmoid approaches have been continuously developed and refined over the years, leading to great heterogeneity in their definitions and descriptions. Owing to the common use of the presigmoid corridor in lateral skull base surgery, a simple anatomy-based and self-explanatory classification is needed to delineate the operative perspective of the different variants of the presigmoid route. Herein, the authors conducted a scoping review of the literature with the aim of proposing a classification system for presigmoid approaches.

METHODS The PubMed, EMBASE, Scopus, and Web of Science databases were searched from inception to December 9, 2022, following the PRISMA Extension for Scoping Reviews guidelines to include clinical studies reporting the use of “stand-alone” presigmoid approaches. Findings were summarized based on the anatomical corridor, trajectory, and target lesions to classify the different variants of the presigmoid approach.

RESULTS Ninety-nine clinical studies were included for analysis, and the most common target lesions were vestibular schwannomas (60/99, 60.6%) and petroclival meningiomas (12/99, 12.1%). All approaches had a common entry pathway (i.e., mastoidectomy) but were differentiated into two main categories based on their relationship to the labyrinth: translabyrinthine or anterior corridor (80/99, 80.8%) and retrolabyrinthine or posterior corridor (20/99, 20.2%). The anterior corridor comprised 5 variations based on the extent of bone resection: 1) partial translabyrinthine (5/99, 5.1%), 2) transcrusal (2/99, 2.0%), 3) translabyrinthine proper (61/99, 61.6%), 4) transotic (5/99, 5.1%), and 5) transcochlear (17/99, 17.2%). The posterior corridor consisted of 4 variations based on the target area and trajectory in relation to the IAC: 6) retrolabyrinthine inframeatal (6/99, 6.1%), 7) retrolabyrinthine transmeatal (19/99, 19.2%), 8) retrolabyrinthine suprameatal (1/99, 1.0%), and 9) retrolabyrinthine trans-Trautman’s triangle (2/99, 2.0%).

CONCLUSIONS Presigmoid approaches are becoming increasingly complex with the expansion of minimally invasive techniques. Descriptions of these approaches using the existing nomenclature can be imprecise or confusing. Therefore, the authors propose a comprehensive classification based on the operative anatomy that unequivocally describes presigmoid approaches simply, precisely, and efficiently.