Displacement of mammillary bodies by craniopharyngiomas involving the third ventricle

Displacement of mammillary bodies by craniopharyngiomas involving the third ventricle- surgical-MRI correlation and use in topographical diagnosis

J Neurosurg 119:381–405, 2013

Accurate diagnosis of the topographical relationships of craniopharyngiomas (CPs) involving the third ventricle and/or hypothalamus remains a challenging issue that critically influences the prediction of risks associated with their radical surgical removal. This study evaluates the diagnostic accuracy of MRI to define the precise topographical relationships between intraventricular CPs, the third ventricle, and the hypothalamus.

Methods. An extensive retrospective review of well-described CPs reported in the MRI era between 1990 and 2009 yielded 875 lesions largely or wholly involving the third ventricle. Craniopharyngiomas with midsagittal and coronal preoperative and postoperative MRI studies, in addition to detailed descriptions of clinical and surgical findings, were selected from this database (n = 130). The position of the CP and the morphological distortions caused by the tumor on the sella turcica, suprasellar cistern, optic chiasm, pituitary stalk, and third ventricle floor, including the infundibulum, tuber cinereum, and mammillary bodies (MBs), were analyzed on both preoperative and postoperative MRI studies. These changes were correlated with the definitive CP topography and type of third ventricle involvement by the lesion, as confirmed surgically.

Results. The mammillary body angle (MBA) is the angle formed by the intersection of a plane tangential to the base of the MBs and a plane parallel to the floor of the fourth ventricle in midsagittal MRI studies. Measurement of the MBA represented a reliable neuroradiological sign that could be used to discriminate the type of intraventricular involvement by the CP in 83% of cases in this series (n = 109). An acute MBA (< 60°) was indicative of a primary tuberal-intraventricular topography, whereas an obtuse MBA (> 90°) denoted a primary suprasellar CP position, causing either an invagination of the third ventricle (pseudointraventricular lesion) or its invasion (secondarily intraventricular lesion; p < 0.01). A multivariate model including a combination of 5 variables (the MBA, position of the hypothalamus, presence of hydrocephalus, psychiatric symptoms, and patient age) allowed an accurate definition of the CP topography preoperatively in 74%–90% of lesions, depending on the specific type of relationship between the tumor and third ventricle.

Conclusions. The type of mammillary body displacement caused by CPs represents a valuable clue for ascertaining the topographical relationships between these lesions and the third ventricle on preoperative MRI studies. The MBA provides a useful sign to preoperatively differentiate a primary intraventricular CP originating at the infundibulotuberal area from a primary suprasellar CP, which either invaginated or secondarily invaded the third ventricle.