Minimally invasive posterior percutaneous transarticular C1–C2 screws: how I do it

Acta Neurochirurgica (2020) 162:2047–2050

Transarticular C1–C2 screw fixation, first described by Magerl, is a widely accepted used technique for C1–C2 instability with a good biomechanical stability and fusion rate.

Method We present a 69-year-old woman, who was diagnosed with a C2 Odontoid fracture type III and primarily treated with conservative treatment and collar. During first 2 weeks of follow-up, the patient developed cervical pain associated with C1–C2 instability. A minimally invasive posterior C1–C2 transarticular screw instrumentation with a percutaneus approach was performed.

Results and conclusion Minimally invasive approach with tubular transmuscular approach for C1–C2 transarticular screws instrumentation is safe and effective for C1–C2 instability.

Pedicle Screw Placement Using Augmented Reality Surgical Navigation With Intraoperative 3D Imaging

Spine 2019;44:517–525

The aim of this study was to evaluate the accuracy of pedicle screw placement using augmented reality surgical navigation (ARSN) in a clinical trial.

Summary of Background Data. Recent cadaveric studies have shown improved accuracy for pedicle screw placement in the thoracic spine using ARSN with intraoperative 3D imaging, without the need for periprocedural x-ray. In this clinical study, we used the same system to place pedicle screws in the thoracic and lumbosacral spine of 20 patients.

Methods. The study was performed in a hybrid operating room with an integrated ARSN system encompassing a surgical table, a motorized flat detector C-arm with intraoperative 2D/3D capabilities, integrated optical cameras for augmented reality navigation, and noninvasive patient motion tracking. Three independent reviewers assessed screw placement accuracy using the Gertzbein grading on 3D scans obtained before wound closure. In addition, the navigation time per screw placement was measured.

Results. One orthopedic spinal surgeon placed 253 lumbosacral and thoracic pedicle screws on 20 consenting patients scheduled for spinal fixation surgery. An overall accuracy of 94.1% of primarily thoracic pedicle screws was achieved. No screws were deemed severely misplaced (Gertzbein grade 3). Fifteen (5.9%) screws had 2 to 4mm breach (Gertzbein grade 2), occurring in scoliosis patients only. Thirteen of those 15 screws were larger than the pedicle in which they were placed. Two medial breaches were observed and 13 were lateral. Thirteen of the grade 2 breaches were in the thoracic spine. The average screw placement time was 5.24.1 minutes. During the study, no device-related adverse event occurred. Conclusion. ARSN can be clinically used to place thoracic and lumbosacral pedicle screws with high accuracy and with acceptable navigation time. Consequently, the risk for revision surgery and complications could be minimized. Key words: augmented reality, image-guided surgery, intraoperative 3D cone beam computed tomography imaging, pedicle screw accuracy, scoliosis.

Level of Evidence: 3


Robot-assisted intravertebral augmentation corrects local kyphosis more effectively than a conventional fluoroscopy-guided technique

J Neurosurg Spine 30:289–295, 2019

Intravertebral augmentation (IVA) is a reliable minimally invasive technique for treating Magerl type A vertebral body fractures. However, poor correction of kyphotic angulation, the risk of cement leakage, and significant exposure to radiation (for the surgeon, the operating room staff, and the patient) remain significant issues. The authors conducted a study to assess the value of robot-assisted IVA (RA-IVA) for thoracolumbar vertebral body fractures.

METHODS The authors performed a retrospective, single-center study of patients who had undergone RA-IVA or conventional fluoroscopy-guided IVA (F-IVA) for thoracolumbar vertebral body fractures. Installation and operating times, guidance accuracy, residual local kyphosis, degree of restoration of vertebral body height, incidence of cement leakage, rate of morbidity, length of hospital stay, and radiation-related data were recorded.

RESULTS Data obtained in 30 patients who underwent RA-IVA were compared with those obtained in 30 patients who underwent F-IVA during the same period (the surgical indications were identical, but the surgeons were different). The mean ± SD installation time in the RA-IVA group (24 ± 7.5 minutes) was significantly shorter (p = 0.005) than that in the F-IVA group (26 ± 8 minutes). The mean operating time for the RA-IVA group (52 ± 11 minutes) was significantly longer (p = 0.026) than that for the F-IVA group (30 ± 11 minutes). All RA-IVAs and F-IVAs were Ravi’s scale grade A (no pedicle breach). The mean degree of residual local kyphosis (4.7° ± 3.15°) and the percentage of vertebral body height restoration (63.6% ± 21.4%) were significantly better after RA-IVA than after F-IVA (8.4° ± 5.4° and 30% ± 34%, respectively). The incidence of cement leakage was significantly lower in the RA-IVA group (p < 0.05). The mean length of hospital stay after surgery was 3.2 days for both groups. No surgery-related complications occurred in either group. With RA-IVA, the mean radiation exposure was 438 ± 147 mGy × cm for the patient and 30 ± 17 mGy for the surgeon.

CONCLUSIONS RA-IVA provided better vertebral body fracture correction than the conventional F-IVA. However, RAIVA requires more time than F-IVA.


Minimally invasive transforaminal lumbar interbody fusion with the ROSA Spine robot and intraoperative flat-panel CT guidance

Minimally invasive transforaminal lumbar interbody fusion with the ROSATM Spine robot and intraoperative flat-panel CT guidance

Acta Neurochir (2016) 158:1125–1128

Circumferential arthrodesis is commonly used to treat degenerative lumbar diseases. Minimally invasive techniques may enable faster recovery and reduce the incidence of postoperative infections.

Methods: We report on the surgical technique of a transforaminal lumbar interbody fusion (TLIF) procedure performed with the assistance of a new robotic device (ROSATM Spine) and intraoperative flat-panel CT guidance.

Conclusions: The combined use of this new robotic device and intraoperative CT enables accurate and safe arthrodesis in the treatment of degenerative lumbar disc diseases.

Management of C1–2 traumatic fractures using an intraoperative 3D imaging–based navigation system

Management of C1–2 traumatic fractures using an intraoperative 3D imaging–based navigation system

J Neurosurg Spine 22:128–133, 2015

Fractures of C-1 and C-2 are complex and surgical management may be difficult and challenging due to the anatomical relationship between the vertebrae and neurovascular structures. The aim of this study was to evaluate the role, reliability, and accuracy of cervical fixation using the O-arm intraoperative 3D image–based navigation system.

Methods The authors evaluated patients who underwent a navigation system–based surgery for stabilization of a fracture of C-1 and/or C-2 from August 2011 to August 2013. All of the fixation screws were intraoperatively checked and their position was graded.

Results The patient population comprised 17 patients whose median age was 47.6 years. The surgical procedures were as follows: anterior dens screw fixation in 2 cases, transarticular fixation of C-1 and C-2 in 1 case, fixation using the Harms technique in 12 cases, and occipitocervical fixation in 2 cases. A total of 67 screws were placed. The control intraoperative CT scan revealed 62 screws (92.6%) correctly placed, 4 (5.9%) with a minor cortical violation (< 2 mm), and only 1 screw (1.5%) that was judged to be incorrectly placed and that was immediately corrected. No vascular injury of the vertebral artery was observed either during exposition or during screw placement. No implant failure was observed.

Conclusions The use of a navigation system based on an intraoperative CT allows a real-time visualization of the vertebrae, reducing the risks of screw misplacement and consequent complications.

%d bloggers like this: