Role of Cancer Stem Cells in Spine Tumors

Neurosurgery 71:117–125, 2012 DOI: 10.1227/NEU.0b013e3182532e71

The management of spinal column tumors continues to be a challenge for clinicians. The mechanisms of tumor recurrence after surgical intervention as well as resistance to radiation and chemotherapy continue to be elucidated. Furthermore, the pathophysiology of metastatic spread remains an area of active investigation.

There is a growing body of evidence pointing to the existence of a subset of tumor cells with high tumorigenic potential in many spine cancers that exhibit characteristics similar to those of stem cells. The ability to self-renew and differentiate into multiple lineages is the hallmark of stem cells, and tumor cells that exhibit these characteristics have been described as cancer stem cells (CSCs).

The mechanisms that allow nonmalignant stem cells to promote normal developmental programming by way of enhanced proliferation, promotion of angiogenesis, and increased motility may be used by CSCs to fuel carcinogenesis.

The purpose of this review is to discuss what is known about the role of CSCs in tumors of the osseous spine. First, this article reviews the fundamental concepts critical to understanding the role of CSCs with respect to chemoresistance, radioresistance, and metastatic disease. This discussion is followed by a review of what is known about the role of CSCs in the most common primary tumors of the osseous spine.